3,652 research outputs found
PRIMUS: The Effect of Physical Scale on the Luminosity-Dependence of Galaxy Clustering via Cross-Correlations
We report small-scale clustering measurements from the PRIMUS spectroscopic
redshift survey as a function of color and luminosity. We measure the
real-space cross-correlations between 62,106 primary galaxies with PRIMUS
redshifts and a tracer population of 545,000 photometric galaxies over
redshifts from z=0.2 to z=1. We separately fit a power-law model in redshift
and luminosity to each of three independent color-selected samples of galaxies.
We report clustering amplitudes at fiducial values of z=0.5 and L=1.5 L*. The
clustering of the red galaxies is ~3 times as strong as that of the blue
galaxies and ~1.5 as strong as that of the green galaxies. We also find that
the luminosity dependence of the clustering is strongly dependent on physical
scale, with greater luminosity dependence being found between r=0.0625 Mpc/h
and r=0.25 Mpc/h, compared to the r=0.5 Mpc/h to r=2 Mpc/h range. Moreover,
over a range of two orders of magnitude in luminosity, a single power-law fit
to the luminosity dependence is not sufficient to explain the increase in
clustering at both the bright and faint ends at the smaller scales. We argue
that luminosity-dependent clustering at small scales is a necessary component
of galaxy-halo occupation models for blue, star-forming galaxies as well as for
red, quenched galaxies.Comment: 13 pages, 6 figures, 5 tables; published in ApJ (revised to match
published version
Dark Matter Halo Models of Stellar Mass-Dependent Galaxy Clustering in PRIMUS+DEEP2 at 0.2<z<1.2
We utilize CDM halo occupation models of galaxy clustering to
investigate the evolving stellar mass dependent clustering of galaxies in the
PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past
eight billion years of cosmic time, between . These clustering
measurements provide new constraints on the connections between dark matter
halo properties and galaxy properties in the context of the evolving
large-scale structure of the universe. Using both an analytic model and a set
of mock galaxy catalogs, we find a strong correlation between central galaxy
stellar mass and dark matter halo mass over the range
-, approximately consistent
with previous observations and theoretical predictions. However, the
stellar-to-halo mass relation (SHMR) and the mass scale where star formation
efficiency reaches a maximum appear to evolve more strongly than predicted by
other models, including models based primarily on abundance-matching
constraints. We find that the fraction of satellite galaxies in haloes of a
given mass decreases significantly from to , partly due to
the fact that haloes at fixed mass are rarer at higher redshift and have lower
abundances. We also find that the ratio, a model parameter
that quantifies the critical mass above which haloes host at least one
satellite, decreases from at to at .
Considering the evolution of the subhalo mass function vis-\`{a}-vis satellite
abundances, this trend has implications for relations between satellite
galaxies and halo substructures and for intracluster mass, which we argue has
grown due to stripped and disrupted satellites between and
.Comment: 17 pages, 9 figures and 4 tables; Astrophysical Journal, publishe
PRIMUS + DEEP2: Clustering of X-ray, Radio and IR-AGN at z~0.7
We measure the clustering of X-ray, radio, and mid-IR-selected active
galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and
spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7
separate fields spanning ~10 square degrees. Using the cross-correlation of AGN
with dense galaxy samples, we measure the clustering scale length and slope, as
well as the bias, of AGN selected at different wavelengths. Similar to previous
studies, we find that X-ray and radio AGN are more clustered than
mid-IR-selected AGN. We further compare the clustering of each AGN sample with
matched galaxy samples designed to have the same stellar mass, star formation
rate, and redshift distributions as the AGN host galaxies and find no
significant differences between their clustering properties. The observed
differences in the clustering of AGN selected at different wavelengths can
therefore be explained by the clustering differences of their host populations,
which have different distributions in both stellar mass and star formation
rate. Selection biases inherent in AGN selection, therefore, determine the
clustering of observed AGN samples. We further find no significant difference
between the clustering of obscured and unobscured AGN, using IRAC or WISE
colors or X-ray hardness ratio.Comment: Accepted to ApJ. 23 emulateapj pages, 15 figures, 4 table
Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4
We present results on gas flows in the halo of a Milky Way-like galaxy at
z=0.413 based on high-resolution spectroscopy of a background galaxy. This is
the first study of circumgalactic gas at high spectral resolution towards an
extended background source (i.e., a galaxy rather than a quasar). Using
longslit spectroscopy of the foreground galaxy, we observe spatially extended H
alpha emission with circular rotation velocity v=270 km/s. Using echelle
spectroscopy of the background galaxy, we detect Mg II and Fe II absorption
lines at impact parameter rho=27 kpc that are blueshifted from systemic in the
sense of the foreground galaxy's rotation. The strongest absorber EW(2796) =
0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight
velocity dispersion (sigma=17 km/s) that are consistent with the observed
properties of extended H I disks in the local universe. Our analysis of the
rotation curve also suggests that this r=30 kpc gaseous disk is warped with
respect to the stellar disk. In addition, we detect two weak Mg II absorbers in
the halo with small velocity dispersions (sigma<10 km/s). While the exact
geometry is unclear, one component is consistent with an extraplanar gas cloud
near the disk-halo interface that is co-rotating with the disk, and the other
is consistent with a tidal feature similar to the Magellanic Stream. We can
place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the
extended nature of the background source. We discuss the implications of these
results for models of the geometry and kinematics of gas in the circumgalactic
medium.Comment: 14 pages, 6 figures, submitted to ApJ, comments welcom
PRIMUS: Galaxy Clustering as a Function of Luminosity and Color at 0.2<z<1
We present measurements of the luminosity and color-dependence of galaxy
clustering at 0.2<z<1.0 in the PRIsm MUlti-object Survey (PRIMUS). We quantify
the clustering with the redshift-space and projected two-point correlation
functions, xi(rp,pi) and wp(rp), using volume-limited samples constructed from
a parent sample of over 130,000 galaxies with robust redshifts in seven
independent fields covering 9 sq. deg. of sky. We quantify how the
scale-dependent clustering amplitude increases with increasing luminosity and
redder color, with relatively small errors over large volumes. We find that red
galaxies have stronger small-scale (0.1<rp<1 Mpc/h) clustering and steeper
correlation functions compared to blue galaxies, as well as a strong color
dependent clustering within the red sequence alone. We interpret our measured
clustering trends in terms of galaxy bias and obtain values between
b_gal=0.9-2.5, quantifying how galaxies are biased tracers of dark matter
depending on their luminosity and color. We also interpret the color dependence
with mock catalogs, and find that the clustering of blue galaxies is nearly
constant with color, while redder galaxies have stronger clustering in the
one-halo term due to a higher satellite galaxy fraction. In addition, we
measure the evolution of the clustering strength and bias, and we do not detect
statistically significant departures from passive evolution. We argue that the
luminosity- and color-environment (or halo mass) relations of galaxies have not
significantly evolved since z=1. Finally, using jackknife subsampling methods,
we find that sampling fluctuations are important and that the COSMOS field is
generally an outlier, due to having more overdense structures than other
fields; we find that 'cosmic variance' can be a significant source of
uncertainty for high-redshift clustering measurements.Comment: 22 pages, 21 figures, matches version published in Ap
Missing Data and Multiple Imputation: An Unbiased Approach
The default method of dealing with missing data in statistical analyses is to only use the complete observations (complete case analysis), which can lead to unexpected bias when data do not meet the assumption of missing completely at random (MCAR). For the assumption of MCAR to be met, missingness cannot be related to either the observed or unobserved variables. A less stringent assumption, missing at random (MAR), requires that missingness not be associated with the value of the missing variable itself, but can be associated with the other observed variables. When data are truly MAR as opposed to MCAR, the default complete case analysis method can lead to biased results. There are statistical options available to adjust for data that are MAR, including multiple imputation (MI) which is consistent and efficient at estimating effects. Multiple imputation uses informing variables to determine statistical distributions for each piece of missing data. Then multiple datasets are created by randomly drawing on the distributions for each piece of missing data. Since MI is efficient, only a limited number, usually less than 20, of imputed datasets are required to get stable estimates. Each imputed dataset is analyzed using standard statistical techniques, and then results are combined to get overall estimates of effect. A simulation study will be demonstrated to show the results of using the default complete case analysis, and MI in a linear regression of MCAR and MAR simulated data. Further, MI was successfully applied to the association study of CO2 levels and headaches when initial analysis showed there may be an underlying association between missing CO2 levels and reported headaches. Through MI, we were able to show that there is a strong association between average CO2 levels and the risk of headaches. Each unit increase in CO2 (mmHg) resulted in a doubling in the odds of reported headaches
- …