8,823 research outputs found
Logarithmic Clustering in Submonolayer Epitaxial Growth
We investigate submonolayer epitaxial growth with a fixed monomer flux and
irreversible aggregation of adatom islands due to their effective diffusion.
When the diffusivity D_k of an island of mass k is proportional to k^{-\mu}, a
Smoluchowski rate equation approach predicts steady behavior for 0<\mu<1, with
the concentration c_k of islands of mass k varying as k^{-(3-\mu)/2}. For
\mu>1, continuous evolution occurs in which c_k(t)~(\ln t)^{-(2k-1)\mu/2},
while the total island density increases as N(t)~(\ln t)^{\mu/2}. Monte Carlo
simulations support these predictions.Comment: 4 pages, 2 figure
Transition from small to large world in growing networks
We examine the global organization of growing networks in which a new vertex
is attached to already existing ones with a probability depending on their age.
We find that the network is infinite- or finite-dimensional depending on
whether the attachment probability decays slower or faster than .
The network becomes one-dimensional when the attachment probability decays
faster than . We describe structural characteristics of these
phases and transitions between them.Comment: 5 page
k-core organization of complex networks
We analytically describe the architecture of randomly damaged uncorrelated
networks as a set of successively enclosed substructures -- k-cores. The k-core
is the largest subgraph where vertices have at least k interconnections. We
find the structure of k-cores, their sizes, and their birth points -- the
bootstrap percolation thresholds. We show that in networks with a finite mean
number z_2 of the second-nearest neighbors, the emergence of a k-core is a
hybrid phase transition. In contrast, if z_2 diverges, the networks contain an
infinite sequence of k-cores which are ultra-robust against random damage.Comment: 5 pages, 3 figure
Hierarchy Measures in Complex Networks
Using each node's degree as a proxy for its importance, the topological
hierarchy of a complex network is introduced and quantified. We propose a
simple dynamical process used to construct networks which are either maximally
or minimally hierarchical. Comparison with these extremal cases as well as with
random scale-free networks allows us to better understand hierarchical versus
modular features in several real-life complex networks. For random scale-free
topologies the extent of topological hierarchy is shown to smoothly decline
with -- the exponent of a degree distribution -- reaching its highest
possible value for and quickly approaching zero for .Comment: 4 pages, 4 figure
The interplay of university and industry through the FP5 network
To improve the quality of life in a modern society it is essential to reduce
the distance between basic research and applications, whose crucial roles in
shaping today's society prompt us to seek their understanding. Existing studies
on this subject, however, have neglected the network character of the
interaction between university and industry. Here we use state-of-the-art
network theory methods to analyze this interplay in the so-called Framework
Programme--an initiative which sets out the priorities for the European Union's
research and technological development. In particular we study in the 5th
Framework Programme (FP5) the role played by companies and scientific
institutions and how they contribute to enhance the relationship between
research and industry. Our approach provides quantitative evidence that while
firms are size hierarchically organized, universities and research
organizations keep the network from falling into pieces, paving the way for an
effective knowledge transfer.Comment: 21 pages (including Appendix), 8 figures. Published online at
http://stacks.iop.org/1367-2630/9/18
Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly-doped silicon substrates
In this study we investigate magnetic properties, surface morphology and
crystal structure in iron nanoclusters electrodeposited on lightly-doped (100)
n-type silicon substrates. Our goal is to investigate the spin injection and
detection in the Fe/Si lateral structures. The samples obtained under electric
percolation were characterized by magnetoresistive and magnetic resonance
measurements with cycling the sweeping applied field in order to understand the
spin dynamics in the as-produced samples. The observed hysteresis in the
magnetic resonance spectra, plus the presence of a broad peak in the
non-saturated regime confirming the low field microwave absorption (LFMA), were
correlated to the peaks and slopes found in the magnetoresistance curves. The
results suggest long range spin injection and detection in low resistive
silicon and the magnetic resonance technique is herein introduced as a
promising tool for analysis of electric contactless magnetoresistive samples.Comment: 12 pages, 5 figure
Diluted antiferromagnet in a ferromagnetic enviroment
The question of robustness of a network under random ``attacks'' is treated
in the framework of critical phenomena. The persistence of spontaneous
magnetization of a ferromagnetic system to the random inclusion of
antiferromagnetic interactions is investigated. After examing the static
properties of the quenched version (in respect to the random antiferromagnetic
interactions) of the model, the persistence of the magnetization is analysed
also in the annealed approximation, and the difference in the results are
discussed
- …