8,823 research outputs found

    Logarithmic Clustering in Submonolayer Epitaxial Growth

    Full text link
    We investigate submonolayer epitaxial growth with a fixed monomer flux and irreversible aggregation of adatom islands due to their effective diffusion. When the diffusivity D_k of an island of mass k is proportional to k^{-\mu}, a Smoluchowski rate equation approach predicts steady behavior for 0<\mu<1, with the concentration c_k of islands of mass k varying as k^{-(3-\mu)/2}. For \mu>1, continuous evolution occurs in which c_k(t)~(\ln t)^{-(2k-1)\mu/2}, while the total island density increases as N(t)~(\ln t)^{\mu/2}. Monte Carlo simulations support these predictions.Comment: 4 pages, 2 figure

    Transition from small to large world in growing networks

    Full text link
    We examine the global organization of growing networks in which a new vertex is attached to already existing ones with a probability depending on their age. We find that the network is infinite- or finite-dimensional depending on whether the attachment probability decays slower or faster than (age)1(age)^{-1}. The network becomes one-dimensional when the attachment probability decays faster than (age)2(age)^{-2}. We describe structural characteristics of these phases and transitions between them.Comment: 5 page

    k-core organization of complex networks

    Full text link
    We analytically describe the architecture of randomly damaged uncorrelated networks as a set of successively enclosed substructures -- k-cores. The k-core is the largest subgraph where vertices have at least k interconnections. We find the structure of k-cores, their sizes, and their birth points -- the bootstrap percolation thresholds. We show that in networks with a finite mean number z_2 of the second-nearest neighbors, the emergence of a k-core is a hybrid phase transition. In contrast, if z_2 diverges, the networks contain an infinite sequence of k-cores which are ultra-robust against random damage.Comment: 5 pages, 3 figure

    Hierarchy Measures in Complex Networks

    Full text link
    Using each node's degree as a proxy for its importance, the topological hierarchy of a complex network is introduced and quantified. We propose a simple dynamical process used to construct networks which are either maximally or minimally hierarchical. Comparison with these extremal cases as well as with random scale-free networks allows us to better understand hierarchical versus modular features in several real-life complex networks. For random scale-free topologies the extent of topological hierarchy is shown to smoothly decline with γ\gamma -- the exponent of a degree distribution -- reaching its highest possible value for γ2\gamma \leq 2 and quickly approaching zero for γ>3\gamma>3.Comment: 4 pages, 4 figure

    The interplay of university and industry through the FP5 network

    Full text link
    To improve the quality of life in a modern society it is essential to reduce the distance between basic research and applications, whose crucial roles in shaping today's society prompt us to seek their understanding. Existing studies on this subject, however, have neglected the network character of the interaction between university and industry. Here we use state-of-the-art network theory methods to analyze this interplay in the so-called Framework Programme--an initiative which sets out the priorities for the European Union's research and technological development. In particular we study in the 5th Framework Programme (FP5) the role played by companies and scientific institutions and how they contribute to enhance the relationship between research and industry. Our approach provides quantitative evidence that while firms are size hierarchically organized, universities and research organizations keep the network from falling into pieces, paving the way for an effective knowledge transfer.Comment: 21 pages (including Appendix), 8 figures. Published online at http://stacks.iop.org/1367-2630/9/18

    Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly-doped silicon substrates

    Full text link
    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly-doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples.Comment: 12 pages, 5 figure

    Diluted antiferromagnet in a ferromagnetic enviroment

    Full text link
    The question of robustness of a network under random ``attacks'' is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is investigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed
    corecore