1,210 research outputs found

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica

    Limitations to Frechet's Metric Embedding Method

    Full text link
    Frechet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Frechet embedding is Bourgain's embedding. The authors have recently shown that for every e>0 any n-point metric space contains a subset of size at least n^(1-e) which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is non-Frechet, and the purpose of this note is to show that this is not coincidental. Specifically, for every e>0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Frechet embedding into l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur

    Rebound Attack on JH42

    Full text link

    THE CITRICULUS MEALYBUG, PSEUDOCOCCUS CRYPTUS HEMPEL, AND ITS NATURAL ENEMIES IN ISRAEL: HISTORY AND PRESENT SITUATION

    Get PDF
    THE CITRICULUS MEALYBUG, PSEUDOCOCCUS CRYPTUS HEMPEL, AND ITS NATURAL ENEMIES IN ISRAEL: HISTORY AND PRESENT SITUATION. The citriculus mealybug, Pseudococcus cryptus Hempel, was first discovered in Israel in 1937 and very rapidly became a key pest of citrus. However, since the early 1940s, the mealybug population has sharply decreased. This occurred in parallel with the establishment of the introduced parasitoid Clausenia purpurea Ishii, which was then believed to be the main cause of the biological control of the mealybug. Since the late 1980s, outbreaks of P. cryptus have been recorded mainly in new citrus varieties, such as red grapefruits, pomelo, “sweety” and several peeling varieties. The current outbreaks are probably related to the susceptibility of these mentioned varieties to P. cryptus, and to the adverse effects of Insect Growth Regulators to coccinellid predators, especially Scymnus spp. The introduced C. purpurea and two other local encyrtid parasitoids, Leptomastix near algirica and Anagyrus diversicornis Mercet, rarely emerged from samples of P. cryptus collected during 1996-1998. Four further parasitoid species were introduced into Israel during 1996-1997 against P. cryptus: from central Asia, the platygasterids Allotropa burrelli Muesebeck and A. convexifrons Muesebeck and the encyrtid, Pseudaphycus malinus Gahan; and from Japan, Anagyrus sawadai Ishii. A. convexifrons and A. sawadai successfully parasitized P. cryptus and, therefore, were released in the field but only A. sawadai has so far been recovered. A considerable reduction in population densities of the pest has been recorded since May, 1998, in the major release site of the latter species. Key words: distribution, host plants, Pseudococcus comstocki, P. citriculus, P. viburni, IGR, Coccinellidae, Planococcus citri, P. ficus, Aonidiella aurantii, Ceroplastes floridensis, Anagyrus pseudococci, Leptomastidia abnormis, Leptomastix flavus, Cryptolaemus montrouzieri, Cecidomyiidae, Sympherobiidae, Chrysopidae

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Scalars from Top-condensation Models at Hadron Colliders

    Get PDF
    We study the production and decay of neutral scalars and pseudo-scalars at hadron colliders, in theories where the top-quark mass is the result of a ttˉt\bar t condensate. We show that the dominant decay channel for masses below the ttˉt\bar t threshold is the flavor changing mode tctc. This is a consequence of the non-universal nature of the underlying interactions in all top-condensation models and provides a model-independent signature of these scenarios. We show that an upgraded Tevatron is sensitive to a sizeable region of the interesting parameter space and that the LHC will highly constrain these models through this flavor violating channel.Comment: 4 pages, 4 figures. Minor changes in figures for readibility. final version to appear in PR

    Nonlinear spectral calculus and super-expanders

    Get PDF
    Nonlinear spectral gaps with respect to uniformly convex normed spaces are shown to satisfy a spectral calculus inequality that establishes their decay along Cesaro averages. Nonlinear spectral gaps of graphs are also shown to behave sub-multiplicatively under zigzag products. These results yield a combinatorial construction of super-expanders, i.e., a sequence of 3-regular graphs that does not admit a coarse embedding into any uniformly convex normed space.Comment: Typos fixed based on referee comments. Some of the results of this paper were announced in arXiv:0910.2041. The corresponding parts of arXiv:0910.2041 are subsumed by the current pape

    Bringing Virtualization to the x86 Architecture with the Original VMware Workstation

    Get PDF
    This article describes the historical context, technical challenges, and main implementation techniques used by VMware Workstation to bring virtualization to the x86 architecture in 1999. Although virtual machine monitors (VMMs) had been around for decades, they were traditionally designed as part of monolithic, single-vendor architectures with explicit support for virtualization. In contrast, the x86 architecture lacked virtualization support, and the industry around it had disaggregated into an ecosystem, with different ven- dors controlling the computers, CPUs, peripherals, operating systems, and applications, none of them asking for virtualization. We chose to build our solution independently of these vendors. As a result, VMware Workstation had to deal with new challenges associated with (i) the lack of virtual- ization support in the x86 architecture, (ii) the daunting complexity of the architecture itself, (iii) the need to support a broad combination of peripherals, and (iv) the need to offer a simple user experience within existing environments. These new challenges led us to a novel combination of well-known virtualization techniques, techniques from other domains, and new techniques. VMware Workstation combined a hosted architecture with a VMM. The hosted architecture enabled a simple user experience and offered broad hardware compatibility. Rather than exposing I/O diversity to the virtual machines, VMware Workstation also relied on software emulation of I/O devices. The VMM combined a trap-and-emulate direct execution engine with a system-level dynamic binary translator to ef- ficiently virtualize the x86 architecture and support most commodity operating systems. By relying on x86 hardware segmentation as a protection mechanism, the binary translator could execute translated code at near hardware speeds. The binary translator also relied on partial evaluation and adaptive retranslation to reduce the overall overheads of virtualization. Written with the benefit of hindsight, this article shares the key lessons we learned from building the original system and from its later evolution

    Effective Lagrangian Approach to Weak Radiative Decays of Heavy Hadrons

    Full text link
    Motivated by the observation of the decay BˉKˉγ\bar{B}\to \bar{K}^*\gamma by CLEO, we have systematically analyzed the two-body weak radiative decays of bottom and charmed hadrons. There exist two types of weak radiative decays: One proceeds through the short-distance bsγb\to s\gamma transition and the other occurs through WW-exchange accompanied by a photon emission. Effective Lagrangians are derived for the WW-exchange bremsstrahlung processes at the quark level and then applied to various weak electromagnetic decays of heavy hadrons. Predictions for the branching ratios of Bˉ0D0γ, Λb0Σc0γ, Ξb0Ξc0γ\bar{B}^0\to D^{*0} \gamma,~\Lambda_b^0\to\Sigma_c^0\gamma,~\Xi_b^0\to \Xi_c^0\gamma and \Xi_b^0\to\xip_c^0\gamma are given. In particular, we found B(Bˉ0D0γ)0.9×106{\cal B}(\bar{B}^0 \to D^{*0}\gamma)\approx 0.9\times 10^{-6}. Order of magnitude estimates for the weak radiative decays of charmed hadrons:  D0Kˉ0γ, Λc+Σ+γ~D^0\to \bar{K}^{*0}\gamma,~\Lambda_c^+\to\Sigma^+\gamma and Ξc0Ξ0γ\Xi_c^0\to\Xi^0\gamma are also presented. Within this approach, the decay asymmetry for antitriplet to antitriplet heavy baryon weak radiative transitions is uniquely predicted by heavy quark symmetry. The electromagnetic penguin contribution to Λb0Λγ\Lambda_b^0\to\Lambda\gamma is estimated by two different methods and its branching ratio is found to be of order 1×1051\times 10^{-5}. We conclude that weak radiative decays of bottom hadrons are dominated by the short-distance bsγb\to s\gamma mechanism.Comment: 28 pages + 3 figures (not included), CLNS 94/1278, IP-ASTP-04-94. [Main changes in this revised version: (i) Sect 2 and subsection 4.1 are revised, (ii) A MIT bag method for calculating the decay rate of LambdabΛ+gammaLambda_b \to\Lambda+gamma is presented, (iii) All predictions are updated using the newly available 1994 Particle Data Group, and (iv) Appendix and subsections 3.3 and 4.4 are deleted.

    The KMOS^3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7<z<2.7

    Get PDF
    We present the KMOS^3D survey, a new integral field survey of over 600 galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D survey utilizes synergies with multi-wavelength ground and space-based surveys to trace the evolution of spatially-resolved kinematics and star formation from a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (MM_*) and rest-frame (UV)M(U-V)-M_* planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first year of data we detect Halpha emission in 191 M=3×1097×1011M_*=3\times10^{9}-7\times10^{11} Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In the current sample 83% of the resolved galaxies are rotation-dominated, determined from a continuous velocity gradient and vrot/σ>1v_{rot}/\sigma>1, implying that the star-forming 'main sequence' (MS) is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Halpha kinematic maps indicate at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous IFS studies at z>0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the rotational velocities at the two redshifts are comparable. Combined with existing results spanning z~0-3, disk velocity dispersions follow an approximate (1+z) evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally-stable disk theory.Comment: 20 pages, 11 figures, 1 Appendix; Accepted to ApJ November 2
    corecore