3 research outputs found

    Origami Multistabilty: From Single Vertices to Metasheets

    Get PDF
    We explore the surprisingly rich energy landscape of origami-like folding planar structures. We show that the configuration space of rigid-paneled degree-4 vertices, the simplest building blocks of such systems, consists of at least two distinct branches meeting at the flat state. This suggests that generic vertices are at least bistable, but we find that the nonlinear nature of these branches allows for vertices with as many as five distinct stable states. In vertices with collinear folds and/or symmetry, more branches emerge leading to up to six stable states. Finally, we introduce a procedure to tile arbitrary 4-vertices while preserving their stable states, thus allowing the design and creation of multistable origami metasheets.Comment: For supplemental movies please visit http://www.lorentz.leidenuniv.nl/~chen/multisheet

    Experimental study of convection in the compressible regime

    No full text
    An experiment of thermal convection with significant compressible effects is presented. The high-gravity environment of a centrifuge and the choice of xenon gas enable us to observe an average adiabatic temperature gradient up to 3.5 K cm−1^{-1} over a 4 cm high cavity. At the highest rotation rate investigated, 9990 rpm, the superadiabatic temperature difference applied to the gas layer is less than the adiabatic temperature difference. The convective regime is characterized by a large Rayleigh number, about 1012^{12}, and dominant Coriolis forces (Ekman number of order 10−6^{-6}). The analysis of temperature and pressure fluctuations in our experiments shows that the dynamics of the flow is in a quasi-geostrophic regime. Still, a classical power law (exponent 0.3 ±\pm 0.04) is observed between the Nusselt number (dimensionless heat flux) and the superadiabatic Rayleigh number (dimensionless superadiabatic temperature difference). However, a potential hysteresis is seen between this classical high flux regime and a lower heat flux regime. It is unclear whether this is due to compressible or Coriolis effects. In the transient regime of convection from an isothermal state, we observe a local decrease of temperature which can only be explained by adiabatic decompression
    corecore