1,579 research outputs found
Effect of CCC [(2-chloroethyl)-trimethyl ammonium chloride] on fruiting behaviour of Cabernet Sauvignon
A foliar spray of CCC (300 ppm) applied at the stage when inflorescences were between 25 and 100 % cap fall will increase total yield by increasing cluster number and number of berries/cluster in the year following treatment. The effect of CCC on berry size is influenced by the number of berries/cluster.Einfluß von CCC [(2-Chloräthyl)-trimethylammoniumcblorid] auf die Ertragskomponenten von Cabernet SauvignonWurden die Blätter von Cabernet Sauvignon mit 300 ppm CCC gespritzt, wenn die Calyptren der Blüten zu 25-100°/o abgefallen waren, so war der Ertrag im folgenden Jahr gesteigert; hierbei waren sowohl die Anzahl der Trauben als auch die Anzahl der Beeren/Traube vermehrt. Die Wirkung von CCC auf die Beerengröße wurde durch die Anzahl der Beeren/Traube beeinflußt
Continued development of V. vinifera inflorescence primordia in winter dormant buds
Continued development of inflorescence primordia in winter dormant buds of Vitis vinifera 'Pinot Noir' is reported. In buds sampled from a commercial vineyard in the cool climate wine region of Southern Tasmania, mitotic activity was evident throughout the period from harvest to bud swell the following season. Results showed that in spite of buds entering apparent dormancy, cell division and inflorescence development continued throughout the winter months.
Alpha Antihydrogen Experiment
ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise
test of CPT symmetry with trapped antihydrogen atoms. After reviewing the
motivations, we discuss our recent progress toward the initial goal of stable
trapping of antihydrogen, with some emphasis on particle detection techniques.Comment: Invited talk presented at the Fifth Meeting on CPT and Lorentz
Symmetry, Bloomington, Indiana, June 28-July 2, 201
The narrative self, distributed memory, and evocative objects
In this article, I outline various ways in which artifacts are interwoven with autobiographical memory systems and conceptualize what this implies for the self. I first sketch the narrative approach to the self, arguing that who we are as persons is essentially our (unfolding) life story, which, in turn, determines our present beliefs and desires, but also directs our future goals and actions. I then argue that our autobiographical memory is partly anchored in our embodied interactions with an ecology of artifacts in our environment. Lifelogs, photos, videos, journals, diaries, souvenirs, jewelry, books, works of art, and many other meaningful objects trigger and sometimes constitute emotionally-laden autobiographical memories. Autobiographical memory is thus distributed across embodied agents and various environmental structures. To defend this claim, I draw on and integrate distributed cognition theory and empirical research in human-technology interaction. Based on this, I conclude that the self is neither defined by psychological states realized by the brain nor by biological states realized by the organism, but should be seen as a distributed and relational construct
The cognitive integration of scientific instruments: Information, situated cognition, and scientific practice
Researchers in the biological and biomedical sciences, particularly those working in laboratories, use a variety of artifacts to help them perform their cognitive tasks. This paper analyses the relationship between researchers and cognitive artifacts in terms of integration. It first distinguishes different categories of cognitive artifacts used in biological practice on the basis of their informational properties. This results in a novel classification of scientific instruments, conducive to an analysis of the cognitive interactions between researchers and artifacts. It then uses a multidimensional framework in line with complementarity-based extended and distributed cognition theory to conceptualize how deeply instruments in different informational categories are integrated into the cognitive systems of their users. The paper concludes that the degree of integration depends on various factors, including the amount of informational malleability, the intensity and kind of information flow between agent and artifact, the trustworthiness of the information, the procedural and informational transparency, and the degree of individualisation
Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum
(minimum-B) trap formed by superconducting octupole and mirror magnet coils.
The trapped antiatoms were detected by rapidly turning off these magnets,
thereby eliminating the magnetic minimum and releasing any antiatoms contained
in the trap. Once released, these antiatoms quickly hit the trap wall,
whereupon the positrons and antiprotons in the antiatoms annihilated. The
antiproton annihilations produce easily detected signals; we used these signals
to prove that we trapped antihydrogen. However, our technique could be
confounded by mirror-trapped antiprotons, which would produce
seemingly-identical annihilation signals upon hitting the trap wall. In this
paper, we discuss possible sources of mirror-trapped antiprotons and show that
antihydrogen and antiprotons can be readily distinguished, often with the aid
of applied electric fields, by analyzing the annihilation locations and times.
We further discuss the general properties of antiproton and antihydrogen
trajectories in this magnetic geometry, and reconstruct the antihydrogen energy
distribution from the measured annihilation time history.Comment: 17 figure
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
Charges in cold, multiple-species, non-neutral plasmas separate radially by
mass, forming centrifugally-separated states. Here, we report the first
detailed measurements of such states in an electron-antiproton plasma, and the
first observations of the separation dynamics in any centrifugally-separated
system. While the observed equilibrium states are expected and in agreement
with theory, the equilibration time is approximately constant over a wide range
of parameters, a surprising and as yet unexplained result. Electron-antiproton
plasmas play a crucial role in antihydrogen trapping experiments
Precision Measurement of the Mass Difference
We have measured the vector-pseudoscalar mass splitting , significantly more precise than the previous
world average. We minimize the systematic errors by also measuring the
vector-pseudoscalar mass difference using the radiative
decay , obtaining
. This is
then combined with our previous high-precision measurement of
, which used the decay . We also
measure the mass difference MeV, using the
decay modes of the and mesons.Comment: 18 pages uuencoded compressed postscript (process with uudecode then
gunzip). hardcopies with figures can be obtained by sending mail to:
[email protected]
- …