10 research outputs found

    Disturbances in Response Inhibition and Emotional Processing as Potential Pathways to Violence in Schizophrenia: A High-Density Event-Related Potential Study

    Get PDF
    OBJECTIVE: Increased susceptibility to emotional triggers and poor response inhibition are important in the etiology of violence in schizophrenia. Our goal was to evaluate abnormalities in neurophysiological mechanisms underlying response inhibition and emotional processing in violent patients with schizophrenia (VS) and 3 different comparison groups: nonviolent patients (NV), healthy controls (HC) and nonpsychotic violent subjects (NPV). METHODS: We recorded high-density Event-Related Potentials (ERPs) and behavioral responses during an Emotional Go/NoGo Task in 35 VS, 24 NV, 28 HC and 31 NPV subjects. We also evaluated psychiatric symptoms and impulsivity. RESULTS: The neural and behavioral deficits in violent patients were most pronounced when they were presented with negative emotional stimuli: They responded more quickly than NV when they made commission errors (ie, failure of inhibition), and evidenced N2 increases and P3 decreases. In contrast, NVs showed little change in reaction time or ERP amplitude with emotional stimuli. These N2 and P3 amplitude changes in VSs showed a strong association with greater impulsivity. Besides these group specific changes, VSs shared deficits with NV, mostly N2 reduction, and with violent nonpsychotic subjects, particularly P3 reduction. CONCLUSION: Negative affective triggers have a strong impact on violent patients with schizophrenia which may have both behavioral and neural manifestations. The resulting activation could interfere with response inhibition. The affective disruption of response inhibition, identified in this study, may index an important pathway to violence in schizophrenia and suggest new modes of treatment

    Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia

    Get PDF
    Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals
    corecore