35 research outputs found

    Single-Channel Flow Injection Spectrophotometric Determination of Nickel Using Furildioxime in Micellar Solution

    Get PDF
    A very simple, selective, and fast flow injection spectrophotometeric method is developed for determination of nickel using furildioxime as complexing agent. Micellar solution of brij-35 is employed to solubilize the sparingly soluble complex of Ni-furildioxime in buffered aqueous system (pH-9.00). Under optimized conditions, absorbance is linear from 0.02 to 10 μg mL−1 using 500 μL sample volume and from 10 to 30 μg mL−1 using 50 μL sample volume of nickel at 480 nm, with R2 = 0.9971 and 0.9916, respectively. The molar absorption coefficient and Sandell's sensitivity were 6.0 × 103 L mol−1 cm−1 and 0.01 ng cm−2, respectively. The sample throughput of the method is 120 samples per hour with RSD of 0.01–0.2% for 0.02 to 10 μg mL−1 nickel (n = 5), indicating that the method is highly precise and reproducible. Interference from cobalt is removed by Nitroso R-salt-modified XAD-16. The developed method is validated by analysing certified reference materials and is applied to assess nickel content of commercially available cigarettes

    A Novel Micellar Electrokinetic Chromatographic Method for Separation of Metal-DDTC Complexes

    Get PDF
    Micellar electrokinetic chromatography (MEKC) was examined for the separation and determination of Mo(VI), Cr(VI), Ni(II), Pd(II), and Co(III) as diethyl dithiocarbamate (DDTC) chelates. The separation was achieved from fused silica capillary (52 cm × 75 μm id) with effective length 40 cm, background electrolyte (BGE) borate buffer pH 9.1 (25 mM), CTAB 30% (100 mM), and 1% butanol in methanol (70 : 30 : 5 v/v/v) with applied voltage of −10 kV using reverse polarity. The photodiode array detection was achieved at 225 nm. The linear calibration for each of the element was obtained within 0.16–10 μg/mL with a limit of detection (LOD) 0.005–0.0167 μg/mL. The separation and determination was repeatable with relative standard deviation (RSD) within 2.4–3.3% (n = 4) in terms of migration time and peak height/peak area. The method was applied for the determination of Mo(VI) from potatoes and almond, Ni(II) from hydrogenated vegetable oil, and Co(III) from pharmaceutical preparations with RSD within 3.9%. The results obtained were checked by standard addition and rechecked by atomic absorption spectrometry

    ISSN-1996-918X Pak

    Get PDF
    Abstract BSOPD, bis(salicylaldehyde) orthophenylenediamine) is investigated as complexing agent in capillary electrophoresis for determination of gold and chromium. BSOPD was chosen as the UVVisible absorbing chelating ligand because of its ability to form stable complexes with metal ions. Both the metal ions can be determined in single run under optimized conditions with run time of 12 minutes including coexisted ions usually present in waste water. Separation was achieved at optimized conditions of 50 mM phosphate buffer as a background electrolyte at pH =3.4, at applied voltage of -10 kV and detection wavelength of 231 nm. Under above mentioned conditions, limit of quantification (0.5 and 10 µg mL -1 ) and detection limit (0.1667 and 3.33 µg mL -1 ) were found for Au(III) and Cr(VI), respectively. Linear calibration graphs were obtained 0.5 -50 µg mL -1 for Au(III) and 10 -60 µg mL -1 for Cr(VI) with the correlation coefficient value 0.996 and 0.993, respectively. Utility of this method for metal analysis has been investigated by determining gold from wastewater samples of goldsmith factories and chromium in some environmental waters (portable and polluted).The method was validated by comparing results obtained with capillary zone electrophoresis with atomic absorption spectroscopy

    Nano-antivirals: A comprehensive review

    Get PDF
    Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties

    Multi-component quantitation of loratadine, pseudoephedrine and paracetamol in plasma and pharmaceutical formulations with liquid chromatography-tandem mass spectrometry utilizing a monolithic column

    Full text link
    The purpose of this study was to develop a rapid, simple and sensitive quantitation method for pseudoephedrine (PSE), paracetamol (PAR) and loratadine (LOR) in plasma and pharmaceuticals using liquid chromatography-tandem mass spectrometry with a monolithic column. Separation was achieved using a gradient composition of methanol-0.1% formic acid at a flow rate of 1.0 mL min-1. Mass spectral transitions were recorded in SRM mode. System validation was evaluated for precision, specificity and linearity. Limit of detection for pseudoephedrine, paracetamol, and loratadine were determined to be 3.14, 1.86 and 1.44 ng mL-1, respectively, allowing easy determination in plasma with % recovery of 93.12 to 101.56%

    Structural, Optical, and Renewable Energy-Assisted Photocatalytic Dye Degradation Studies of ZnO, CuZnO, and CoZnO Nanostructures for Wastewater Treatment

    Get PDF
    Renewable energy can be harnessed from wastewater, whether from municipalities or industries, but this potential is often ignored. The world generates over 900 km3 of wastewater annually, which is typically treated through energy-consuming processes, despite its potential for energy production. Environmental pollution is a most important and serious issue for all and their adulterations to the aquatic system are very toxic in very low concentrations. Photocatalysis is a prominent approach to eliminating risky elements from the environment. The present study developed Zinc oxide (ZnO), Copper-doped Zinc oxide (CuZnO), and Cobalt-doped Zinc oxide (CoZnO) nanostructures (NSs) by facile hydrothermal route. The crystalline and structural stability of the synthesized nanostructures were evident from XRD and FESEM analysis. Metal, and oxygen bond and their interaction on the surfaces and their valency were explored from XPS spectra. Optical orientations and electron movements were revealed from UV-Visible analysis. After 100 min exposure time with 1 g of catalyst concentration 60%, 70%, and 89% of dye degraded, for dye concentration (5 mg/L to 50 mg/L), the huge variation observed (70% to 22%), (80% to 16%), (94% to 10%). The highest photodegradation rate (55%, 75%, 90%) was observed on pH~12 using ZnO, CoZnO, and CuZnO respectively. Photodegradation of methylene blue confirmed the largest surface area, rate of recombination, photo-excited charge carriers, photo-sensitivity range, and radical generations of ZnO, CuZnO, and CoZnO. The present study, therefore, suggested that CuZnO would be preferred to produce nanomaterials for industrial wastewater treatment like methylene

    Results of the COVID-19 mental health international for the general population (COMET-G) study.

    Get PDF
    INTRODUCTION: There are few published empirical data on the effects of COVID-19 on mental health, and until now, there is no large international study. MATERIAL AND METHODS: During the COVID-19 pandemic, an online questionnaire gathered data from 55,589 participants from 40 countries (64.85% females aged 35.80 ± 13.61; 34.05% males aged 34.90±13.29 and 1.10% other aged 31.64±13.15). Distress and probable depression were identified with the use of a previously developed cut-off and algorithm respectively. STATISTICAL ANALYSIS: Descriptive statistics were calculated. Chi-square tests, multiple forward stepwise linear regression analyses and Factorial Analysis of Variance (ANOVA) tested relations among variables. RESULTS: Probable depression was detected in 17.80% and distress in 16.71%. A significant percentage reported a deterioration in mental state, family dynamics and everyday lifestyle. Persons with a history of mental disorders had higher rates of current depression (31.82% vs. 13.07%). At least half of participants were accepting (at least to a moderate degree) a non-bizarre conspiracy. The highest Relative Risk (RR) to develop depression was associated with history of Bipolar disorder and self-harm/attempts (RR = 5.88). Suicidality was not increased in persons without a history of any mental disorder. Based on these results a model was developed. CONCLUSIONS: The final model revealed multiple vulnerabilities and an interplay leading from simple anxiety to probable depression and suicidality through distress. This could be of practical utility since many of these factors are modifiable. Future research and interventions should specifically focus on them

    Removal of Parathion from Aqueous Media Through p-tert-Butylcalix[4]arene Based Modified Silica

    No full text
    This study explores, adsorption efficiency of p-tert-butylcalix[4]arene based modified silica to remove parathion from aqueous environment. The adsorption parameters, i.e. pH, concentration of pesticide solution, contact time and adsorbent dosage were optimized, as 10, 1 mg L-1, 40 min and 0.04 g, respectively. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were used to evaluate the adsorption mechanism. Adsorption constants values of these models suggest that the adsorption of parathion is favorable and were found to be best fit with Freundlich isotherm. From the kinetic study it can be predicted that adsorption of parathion follows Ho and McKay model (pseudo-second order). Thermodynamic parameters, enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) have also been evaluated and were found as -132.25, 0.45, -4.14 Jmol-1, respectively
    corecore