12 research outputs found

    Modification of cellulose ether with organic carbonate for enhanced thermal and rheological properties: Characterization and analysis

    Get PDF
    Reduction in viscosity at higher temperatures is the main limitation of utilizing cellulose ethers in high thermal reservoir conditions for petroleum industry applications. In this study, cellulose ether (hydroxyethyl methyl cellulose (HEMC)) is modified using organic carbonates, i.e., propylene carbonate (PC) and diethyl carbonate (DEC), to overcome the limitation of reduced viscosity at high temperatures. The polymer composites were characterized through various analytical techniques, including Fourier-transform infrared (FTIR), H-NMR, X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), -potential measurement, molecular weight determination, and rheology measurements. The experimental results of structural and morphological characterization confirm the modification and formation of a new organic carbonate-based cellulose ether. The thermal analysis revealed that the modified composites have greater stability, as the modified samples demonstrated higher vaporization and decomposition temperatures. -potential measurement indicates higher stability of DEC- and PC-modified composites. The relative viscometry measurement revealed that the modification increased the molecular weight of PC- and DEC-containing polymers, up to 93,000 and 99,000 g/moL, respectively. Moreover, the modified composites exhibited higher levels of stability, shear strength and thermal resistance as confirmed by viscosity measurement through rheology determination. The observed increase in viscosity is likely due to the enhanced inter- and intramolecular interaction and higher molecular weight of modified composites. The organic carbonate performed as a transesterification agent that improves the overall properties of cellulose ether (HEMC) at elevated temperatures as concluded from this study. The modification approach in this study will open the doors to new applications and will be beneficial for substantial development in the petroleum industry

    Enhanced oil recovery by hydrophilic silica nanofluid: Experimental evaluation of the impact of parameters and mechanisms on recovery potential

    Get PDF
    Nanofluids as an EOR technique are reported to enhance oil recoveries. Among all the nanomaterial silica with promising lab results, economic and environmental acceptability are an ideal material for future applications. Despite the potential to enhance recoveries, understanding the two-fold impact of parameters such as concentration, salinity, stability, injection rate, and irreproducibility of results has arisen ambiguities that have delayed field applications. This integrated study is conducted to ascertain two-fold impacts of concentration and salinity on recovery and stability and evaluates corresponding changes in the recovery mechanism with variance in the parameters. Initially, silica nanofluids’ recovery potential was evaluated by tertiary flooding at different concentrations (0.02, 0.05, 0.07, 0.1) wt. % at 20,000 ppm salinity. The optimum concentration of 0.05 wt. % with the highest potential in terms of recovery, wettability change, and IFT reduction was selected. Then nano-flooding was carried out at higher salinities at a nanomaterial concentration of 0.05 wt. %. For the mechanism’s evaluation, the contact angle, IFT and porosity reduction, along with differential profile changes were analyzed. The recovery potential was found at its highest for 0.05 wt. %, which reduced when concentrations were further increased as the recovery mechanisms changed and compromised stability. Whereas salinity also had a two-fold impact with salinity at 30,000 ppm resulting in lower recovery, higher salinity destabilized the solution but enhanced recoveries by enhancing macroscopic mechanisms of pore throat plugging

    Clinical Profile of Stroke Patients Presenting to the Emergency Department of a Major Stroke Centre in Oman

    Get PDF
    Objectives: Stroke is a significant public health problem and one of the most important preventable non-communicable diseases. Preventive stroke programmes with a better focus on increasing awareness among those who are currently at risk are yet to be properly established in Oman. This study was conducted to describe the characteristics of stroke patients presenting to a tertiary care hospital in Oman. Methods: This cross-sectional hospital-based study included 193 stroke cases which were prospectively recruited from the Emergency Department of Khoula Hospital, Muscat, Oman. Data were collected from November 2017 to April 2018. Results: The total number of patients was 193 with 82.9% of strokes being ischaemic strokes. Of this, 58% were male. The mean age of stroke patients was 61.05 years. Risk factors included hypertension (72.5%) and diabetes mellitus (54.4%). Dyslipidaemia, atrial fibrillation and ischaemic heart diseases were not particularly prevalent in the studied population and 24.4% of ischaemic strokes had large artery atherosclerosis while 21.9% had small vessel occlusion. Significantly more patients had lower Glasgow Coma Scale scores, required intensive care unit admission and experienced in-hospital deaths due to haemorrhagic stroke compared to ischaemic stroke. Conclusion: This study provides essential data regarding stroke characteristics specific to Oman’s population. Most of the information obtained appears to be in-line with what has been described internationally and, hence, preventive strategies similar to those indicated in extant literature can be implemented. This information can be utilised by health administrators in planning resource allocation. Further research is needed to explore rehabilitation aspects and long-term outcomes. Keywords: Stroke; Ischemic Stroke; Haemorrhagic Stroke; Risk Factors; Thrombolytic Therapy; Epidemiology; Oman.

    Preface

    No full text
    Because of the travel restrictions between China and other countries of our keynote speaker, the 9th annual 2021 International Conference on Material Science and Environmental Engineering [MSEE2021] was held on November 27th, 2021 (Virtual Conference). The conference was held via Tencent Meeting Application. MSEE2021 aims to bring researchers, engineers, and students to the areas of Material Science and Environmental Engineering. MSEE2021 features unique mixed topics of Material Science and Advanced Materials, Material Engineering and Application, Environmental Science and Engineering and Mechanical Design and Technology. We received over 197 submissions from various parts of the world. The Technical Program Committee worked very hard to have all manuscripts reviewed before the review deadline. All the accepted papers have been submitted to strict peer-review, and selected based on originality, significance and clarity for the purpose of the conference. The conference program is extremely profound and featuring high-impact presentations of selected papers and additional late-breaking contributions. We sincerely hope that the conference would not only show the participants a broad overview of the latest research results on related fields, but also provide them with a significant platform for academic connection and exchange. There are two keynote speakers and four invited sessions. The keynote speakers are internationally recognized leading experts in their research fields, who have demonstrated outstanding proficiency and have achieved distinction in their profession. The proceedings would be published by IOP Journal of Physics Conference Series. We would like to express our sincere gratitude to all the members of Technical Program Committee and organizers for their enthusiasm, time, and expertise. Our deep thanks also go to many volunteers and staffs for the long hours and hard work they have generously given to MSEE2021. Last but not least, we would like to thank all the authors, speaker and participants for their great contributions to the success of MSEE2021. MSEE2021 Organizing Committee List of Committee of MSEE2021 are available in this pdf.</jats:p

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable
    corecore