7,282 research outputs found

    To conclude: keep inflation low and, in principle, eliminate it

    Get PDF
    The U.S. economy performed well across the board in 1997, with low unemployment, robust economic growth, and the lowest sustained inflation in decades. Nevertheless, the current framework for monetary policymaking does not ensure that inflation is down for the count, says Federal Reserve Bank of St. Louis president Thomas C. Melzer in a speech reprinted here. In this speech, Melzer argues that the Federal Reserve ought to secure the best environment for economic growth by adopting multi-year inflation targets to reduce the trend rate of inflation and keep inflation low.Inflation (Finance) ; Monetary policy - United States ; Economic conditions - United States

    Credible monetary policy to sustain growth

    Get PDF
    Despite the fact that the U.S. economy has been performing very well recently, monetary policymakers have been the targets of some criticism. In the speech reprinted here, which was delivered to a group of bankers in June 1997, St. Louis Federal Reserve President Thomas C. Melzer responds to the critics and outlines some ideas for maintaining sustaining, noninflationary economic growth. In his assessment, credibility is a key aspect of successful monetary policy.Monetary policy ; Monetary policy - United States ; Inflation (Finance)

    Vertical pairing of identical particles suspended in the plasma sheath

    Full text link
    It is shown experimentally that vertical pairing of two identical microspheres suspended in the sheath of a radio-frequency (rf) discharge at low gas pressures (a few Pa), appears at a well defined instability threshold of the rf power. The transition is reversible, but with significant hysteresis on the second stage. A simple model, which uses measured microsphere resonance frequencies and takes into account besides Coulomb interaction between negatively charged microspheres also their interaction with positive ion wake charges, seems to explain the instability threshold quite well.Comment: 4 pages, 6 figures. to appear in Phys. Rev. Lett. 86, May 14th (2001

    Financial Downturn and Impact on Biosciences Development

    Get PDF
    System requirements: Windows Media Player version 9 or above.Thomas Melzer spoke about the impact that the recent financial downturn has had on venture capital investment, specifically addressing bioscience investments

    Finite Coulomb Crystal Formation

    Full text link
    Dust particles immersed within a plasma environment, such as those found in planetary rings or comets, will acquire an electric charge. If the ratio of the inter-particle potential energy to average kinetic energy is large enough the particles will form either a "liquid" structure with short-range ordering or a crystalline structure with long-range ordering. Since their discovery in laboratory environments in 1994, such crystals have been the subject of a variety of experimental, theoretical and numerical investigations. Most numerical and theoretical investigations have examined infinite systems assuming periodic boundary conditions. Since experimentally observed crystals can be comprised of a few hundred particles, this often leads to discrepancies between predicted theoretical results and experimental data. In addition, recent studies have concentrated on the importance of random charge variations between individual dust particles, but very little on the importance of size variations between the grains. Such size variations naturally lead to inter-grain charge variations which can easily become more important than those due to random charge fluctuations (which are typically less than one percent). Although such size variations can be largely eliminated experimentally by introducing mono-dispersive particles, many laboratory systems and all astrophysical environments contain significant size distributions. This study utilizes a program to find the equilibrium positions of a dusty plasma system as well as a modified Barnes-Hut code to model the dynamic behavior of such systems. It is shown that in terms of inter-particle spacing and ordering, finite systems are significantly different than infinite ones, particularly for the most-highly ordered states.Comment: 6 pages, Presented at COSPAR '0

    Design and validation of a medical robotic device system to control two collaborative robots for ultrasound-guided needle insertions

    Get PDF
    The percutaneous biopsy is a critical intervention for diagnosis and staging in cancer therapy. Robotic systems can improve the efficiency and outcome of such procedures while alleviating stress for physicians and patients. However, the high complexity of operation and the limited possibilities for robotic integration in the operating room (OR) decrease user acceptance and the number of deployed robots. Collaborative systems and standardized device communication may provide approaches to overcome named problems. Derived from the IEEE 11073 SDC standard terminology of medical device systems, we designed and validated a medical robotic device system (MERODES) to access and control a collaborative setup of two KUKA robots for ultrasound-guided needle insertions. The system is based on a novel standard for service-oriented device connectivity and utilizes collaborative principles to enhance user experience. Implementing separated workflow applications allows for a flexible system setup and configuration. The system was validated in three separate test scenarios to measure accuracies for 1) co-registration, 2) needle target planning in a water bath and 3) in an abdominal phantom. The co-registration accuracy averaged 0.94 ± 0.42 mm. The positioning errors ranged from 0.86 ± 0.42 to 1.19 ± 0.70 mm in the water bath setup and from 1.69 ± 0.92 to 1.96 ± 0.86 mm in the phantom. The presented results serve as a proof-of-concept and add to the current state of the art to alleviate system deployment and fast configuration for percutaneous robotic interventions

    Digital Imaging and Analysis of Dusty Plasmas

    Full text link
    Dust particles immersed within a plasma environment, such as those found in planetary rings or cometary environments, will acquire an electric charge. If the ratio of interparticle potential energy to average kinetic energy is high enough the particles will form either a 'liquid' structure with short-range ordering or a crystalline structure with long-range ordering. Since their discovery in laboratory environments in 1994, such crystals have been the subject of a variety of experimental, theoretical, and numerical investigations. Laboratory experiments analyzing the behavior of dust grains in a plasma rely on optical diagnostics to provide data about the system in a non-perturbative manner. In the past, capturing, imaging, and analyzing crystalline structure in dusty plasmas has been a non-trivial problem. Utilizing digital imaging and analysis systems, data capture, image formatting, and analysis can be done quickly. Following data capture, image analysis is conducted using modified Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) algorithms. The data extracted is then used to construct Voronoi diagrams, calculate particle density, inter-particle spacing, pair correlation functions, and thermal energy. From this data other dust plasma parameters can be inferred such as inter-particle forces and grain charges.Comment: 6 pages, Presented at COSPAR '0

    Comparison of Illumina and Oxford Nanopore Technology for genome analysis of Francisella tularensis, Bacillus anthracis, and Brucella suis

    Get PDF
    Background Bacterial epidemiology needs to understand the spread and dissemination of strains in a One Health context. This is important for highly pathogenic bacteria such as Bacillus anthracis, Brucella species, and Francisella tularensis. Whole genome sequencing (WGS) has paved the way for genetic marker detection and high-resolution genotyping. While such tasks are established for Illumina short-read sequencing, Oxford Nanopore Technology (ONT) long-read sequencing has yet to be evaluated for such highly pathogenic bacteria with little genomic variations between strains. In this study, three independent sequencing runs were performed using Illumina, ONT flow cell version 9.4.1, and 10.4 for six strains of each of Ba. anthracis, Br. suis and F. tularensis. Data from ONT sequencing alone, Illumina sequencing alone and two hybrid assembly approaches were compared. Results As previously shown, ONT produces ultra-long reads, while Illumina produces short reads with higher sequencing accuracy. Flow cell version 10.4 improved sequencing accuracy over version 9.4.1. The correct (sub-)species were inferred from all tested technologies, individually. Moreover, the sets of genetic markers for virulence, were almost identical for the respective species. The long reads of ONT allowed to assemble not only chromosomes of all species to near closure, but also virulence plasmids of Ba. anthracis. Assemblies based on nanopore data alone, Illumina data alone, and both hybrid assemblies correctly detected canonical (sub-)clades for Ba. anthracis and F. tularensis as well as multilocus sequence types for Br. suis. For F. tularensis, high-resolution genotyping using core-genome MLST (cgMLST) and core-genome Single-Nucleotide-Polymorphism (cgSNP) typing produced highly comparable results between data from Illumina and both ONT flow cell versions. For Ba. anthracis, only data from flow cell version 10.4 produced similar results to Illumina for both high-resolution typing methods. However, for Br. suis, high-resolution genotyping yielded larger differences comparing Illumina data to data from both ONT flow cell versions. Conclusions In summary, combining data from ONT and Illumina for high-resolution genotyping might be feasible for F. tularensis and Ba. anthracis, but not yet for Br. suis. The ongoing improvement of nanopore technology and subsequent data analysis may facilitate high-resolution genotyping for all bacteria with highly stable genomes in future.Peer Reviewe
    corecore