4 research outputs found

    Facility for interferometric testing of 1.25-m mirrors at liquid helium temperatures

    Get PDF
    A concept is presented for a national cryogenic optics test facility capable of optical characterization of 1.25 m diameter optics having focal lengths up to 6.2 m at temperatures from 300 K to near 4 K. The facility will be comprised of a large Dewar with a phase shift interferometer, a two stage vacuum system employing a turbomolecular pump, and an integral vibration isolation system. The entire facility will be housed in a concrete site with a massive floor to assist in reducing vibration during optical tests. By providing interchangeable sections, the overall height of the Dewar can be adjusted to provide for testing of shorter focal length optics. The background for the facility is discussed along with the facility location, and the requirements and the performance considerations which drive the Dewar design with respect to the vibration isolation system, vacuum system, and optical interferometry

    SOFIA Optical Design for the Aft Configuration

    Get PDF
    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a planned NASA facility consisting of an infrared telescope of 2.5 meter system aperture flying in a modified Boeing 747. It will have an image diameter of 1.5 arc seconds, an operating wavelength range from visible through 1 millimeter, an 8 arc minute field of view, and a chopping secondary. the configuration is a Cassegrian with a diagonal tertiary to direct the beam to a Nasmyth focus. The new choice of a location aft of the wings allows the primary mirror to have about an f/1.4 focal ratio, which is preferable to f/1.1 previously planned for the forward location

    Submillimeter and Far-InfraRed Experiment (SAFIRE): A PI class instrument for SOFIA

    Full text link
    SAFIRE is a versatile imaging Fabry-Perot spectrograph covering 145 to 655 microns, with spectral resolving powers ranging over 5-10,000. Selected as a "PI" instrument for the airborne Stratospheric Observatory for Infrared Astronomy (SOFIA), SAFIRE will apply two-dimensional pop-up bolometer arrays to provide background-limited imaging spectrometry. Superconducting transition edge bolometers and SQUID multiplexers are being developed for these detectors. SAFIRE is expected to be a "First Light" instrument, useable during the initial SOFIA operations. Although a PI instrument rather than a "Facility Class" science instrument, it will be highly integrated with the standard SOFIA planning, observation, and data analysis tools.Comment: 11 page

    Submillimeter and far-infrared experiment (SAFIRE): a PI class instrument for SOFIA

    Get PDF
    SAFIRE is a versatile imaging Fabry-Perot spectrograph covering 145 to 655 microns, with spectral resolving powers ranging over 5 - 10,000. Selected as a `PI' instrument for the airborne Stratospheric Observatory for Infrared Astronomy (SOFIA). SAFIRE will apply 2D pop-up bolometer arrays to provide background-limited imaging spectrometry. Superconducting transition edge bolometers and SQUID multiplexers are being developed for these detectors. SAFIRE is expected to be a `First Light' instrument, usable during the initial SOFIA operations. Although a PI instrument rather than a `Facility Class' science instrument, it will be highly integrated with the standard SOFIA planning, observation, and data analysis tools
    corecore