50 research outputs found

    2,3-Thienoimide-ended oligothiophenes as ambipolar semiconductors for multifunctional single-layer light-emitting transistors

    Get PDF
    In view of developing multifunctional OLETs, 2,3-thienoimide-ended oligothiophenes are proposed as ideal candidates to effectively ensure good ambipolar field-effect mobility, self-assembly capability and high luminescence in solid state

    Allylic and Allenylic Dearomatization of Indoles promoted by Graphene Oxide via Covalent Grafting Activation Mode

    Get PDF
    The site‐selective allylative and allenylative dearomatization of indoles with alcohols is performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt% loading) as the promoter. Metal‐free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2O/CH3CN, 55 \ub0C, 6 h), broad substrate scope (33 examples, yield up to 92%) and excellent site‐ and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst via simple acidic treatment was also documented

    Polymorph Separation by Ordered Patterning

    Get PDF
    We herein address the problem of polymorph selection by introducing a general and straightforward concept based on their ordering. We demonstrated the concept by the ordered patterning of four compounds capable of forming different polymorphs when deposited on technologically relevant surfaces. Our approach exploits the fact that, when the growth of a crystalline material is confined within sufficiently small cavities, only one of the possible polymorphs is generated. We verify our method by utilizing several model compounds to fabricate micrometric "logic patterns" in which each of the printed pixels is easily identifiable as comprising only one polymorph and can be individually accessed for further operations

    Interaction of graphene-related materials with human intestinal cells: an in vitro approach

    Get PDF
    Graphene-related materials (GRM) inherit unique combinations of physicochemical properties which offer a high potential for technological as well as biomedical applications. It is not clear which physicochemical properties are the most relevant factors influencing the behavior of GRM in complex biological environments. In this study we have focused on the interaction of GRM, especially graphene oxide (GO),and Caco-2 cells in vitro. We mimiked stomach transition by acid-treatment of two representative GRM followed by analysis of their physicochemical properties. No significant changes in the material properties or cell viability of exposed Caco-2 cells in respect to untreated GRM could be detected. Furthermore, we explored the interaction of four different GO and Caco-2 cells to identify relevant physicochemical properties for the establishment of a material property–biological response relationship. Despite close interaction with the cell surface and the formation of reactive oxygen species (ROS), no acute toxicity was found for any of the applied GO (concentration range 0–80 μg ml−1) after 24 h and 48 h exposure. Graphene nanoplatelet aggregates led to low acute toxicity at high concentrations, indicating that aggregation, the number of layers or the C/O ratio have a more pronounced effect on the cell viability than the lateral size alone

    Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water

    Get PDF
    Due to water depletion and increasing level of pollution from standard and emerging contaminants, the development of more efficient purification materials and technology for drinking water treatment is a crucial challenge to be addressed in the near future. Graphene oxide (GO) has been pointed as one of the most promising materials to build structure and devices for new adsorbents and filtration systems. Here, we analyzed two types of GO doped 3D chitosan-gelatin aerogels with GO sheets embedded in the bulk or deposited on the surface. Through combined structural characterization and adsorption tests on selected proxies of drinking water micropollutants, we compared both GO-embedded and GO-coated materials and established the best architecture for achieving enhanced removal efficiency toward con- taminants in water. To evaluate the best configuration, we studied the adsorption capacity of both systems on two organic molecules (i.e., fluoroquinolonic antibiotics ofloxacin and ciprofloxacin) and a heavy metal (lead Pb2\ufe) of great environmental relevance and with already proved high affinity for GO. The Pb monolayer maximum adsorption capacity qmax was 11.1 mg/g for embedded GO aerogels and 1.5 mg/g in coated GO-ones. Only minor differences were found for organic contaminants between coating and embedding approaches with an adsorption capacity of 5e8 mg/g and no adsorption was found for chitosan-gelatin control aerogels without GO. Finally, potential antimicrobial effects were found particularly for the GO-coated aerogels materials, thus corroborating the multifunctionality of the newly developed porous structures

    Facile high-yield synthesis and purification of lysine-modified graphene oxide for enhanced drinking water purification

    Get PDF
    Lysine-covalently modified graphene oxide (GO-Lys) was prepared by an innovative procedure. Lysine brushes promote enhanced adsorption of bisphenol A, benzophenone-4 and carbamazepine contaminants from tap water, with a removal capacity beyond the state of the art

    Graphene oxide doped polysulfone membrane adsorbers for the removal of organic contaminants from water

    Get PDF
    This work explored polysulfone (PS) – graphene oxide (GO) based porous membranes (PS-GO) as adsorber of seven selected organic contaminants of emerging concern (EOCs) including pharmaceuticals, personal care products, a dye and a surfactant from water. PS-GO was prepared by phase inversion method starting from a PS and GO mixture (5% w/w of GO). The porous PS-GO membranes showed asymmetric and highly porous micrometer sized pores on membrane top (diameter ≈20 μm) and bottom (diameter ≈2–5 μm) surfaces and tens of microns length finger like pores in the section. Nanomechanical mapping reveals patches of a stiffer material with Young modules comprised in the range 15–25 GPa, not present in PS pure membranes that are compatible with the presence of GO flakes on the membrane surfaces. PS-GO was immersed in EOCs spiked tap water and the adsorbance efficiency at different contact times and pH evaluated by HPLC analysis. Ofloxacin (OFLOX), benzophenone-3 (BP-3), rhodamine b (Rh), diclofenac (DCF) and triton X-100 (TRX) were removed with efficiency higher than 90% after 4 h treatments. Regeneration of PS-GO and reuse possibilities were demonstrated by washing with ethanol. The adsorption efficiencies toward OFLOX, Rh, DCF and carbamazepine (CBZ) were significantly higher than those of pure PS membrane. Moreover, PS-GO outperformed a commercial granular activated carbon (GAC) at low contact times and compared well at longer contact time for OFLOX, Rh, BP-3 and TRX suggesting the suitability of the newly introduced material for drinking water treatment
    corecore