9 research outputs found

    Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators

    Get PDF
    Designing luminescent materials especially nanomaterials with multifunctional applications is highly challenging and demanding. In this work, we explored pyrochlore La2Hf2O7 nanoparticles (NPs) singly and triply codoped with Eu3+, Tb3+ and Dy3+. Under both ultraviolet and X-ray irradiations, the La2Hf2O7 NPs singly doped with Eu3+, Tb3+ and Dy3+ displayed red, green and yellowish-blue emission, respectively. The concentration quenching study revealed a non-radiative energy transfer in Eu3+ doped La2Hf2O7 NPs, which takes place via dipole-quadrupole mechanism. On the other hand, a dipole-dipole interaction prevails in Tb3+ and Dy3+ doped La2Hf2O7 NPs. Lifetime spectroscopy reveals the stabilization of Eu3+ and Dy3+ ions at La3+ site at low doping concentration whereas a fraction of them migrates to Hf4+ site at high doping concentration. For the La2Hf2O7:Tb3+ NPs, Tb3+ ions are localized at Hf4+ site at all doping concentrations. Furthermore, when triply codoped with Eu3+, Tb3+ and Dy3+ ions, the La2Hf2O7 NPs display beautiful warm white light as a new strategy for color tunability through doping percentage. To sum, our complete spectrum of studies on the structure, UV excited photoluminescence, concentration quenching, and local site spectroscopy of the La2Hf2O7:Ln3+ NPs suggests that they are potential candidates as single-component multicolor-emitting phosphors for lighting and scintillating applications

    Exsolution of catalytically active iridium nanoparticles from strontium titanate

    Get PDF
    The search for new functional materials that combine high stability and efficiency with reasonable cost and ease of synthesis is critical for their use in renewable energy applications. Specifically in catalysis, nanoparticles, with their high surface-to-volume ratio, can overcome the cost implications associated with otherwise having to use large amounts of noble metals. However, commercialized materials, that is, catalytic nanoparticles deposited on oxide supports, often suffer from loss of activity because of coarsening and carbon deposition during operation. Exsolution has proven to be an interesting strategy to overcome such issues. Here, the controlled emergence, or exsolution, of faceted iridium nanoparticles from a doped SrTiO3 perovskite is reported and their growth preliminary probed by in situ electron microscopy. Upon reduction of SrIr0.005Ti0.995O3, the generated nanoparticles show embedding into the oxide support, therefore preventing agglomeration and subsequent catalyst degradation. The advantages of this approach are the extremely low noble metal amount employed (∼0.5% weight) and the catalytic activity reported during CO oxidation tests, where the performance of the exsolved SrIr0.005Ti0.995O3 is compared to the activity of a commercial catalyst with 1% loading (1% Ir/Al2O3). The high activity obtained with such low doping shows the possibility of scaling up this new catalyst, reducing the high cost associated with iridium-based materials.PostprintPostprintPeer reviewe

    Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface

    Get PDF
    In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO3 host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials

    Real-Time Observation of Nanoscale Kink Band Mediated Plasticity in Ion-Irradiated Graphite: An In Situ TEM Study

    No full text
    Graphite IG-110 is a synthetic polycrystalline material used as a neutron moderator in reactors. Graphite is inherently brittle and is known to exhibit a further increase in brittleness due to radiation damage at room temperature. To understand the irradiation effects on pre-existing defects and their overall influence on external load, micropillar compression tests were performed using in situ nanoindentation in the Transmission Electron Microscopy (TEM) for both pristine and ion-irradiated samples. While pristine specimens showed brittle and subsequent catastrophic failure, the 2.8 MeV Au2+ ion (fluence of 4.378 × 1014 cm−2) irradiated specimens sustained extensive plasticity at room temperature without failure. In situ TEM characterization showed nucleation of nanoscale kink band structures at numerous sites, where the localized plasticity appeared to close the defects and cracks while allowing large average strain. We propose that compressive mechanical stress due to dimensional change during ion irradiation transforms buckled basal layers in graphite into kink bands. The externally applied load during the micropillar tests proliferates the nucleation and motion of kink bands to accommodate the large plastic strain. The inherent non-uniformity of graphite microstructure promotes such strain localization, making kink bands the predominant mechanism behind unprecedented toughness in an otherwise brittle material

    Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis

    No full text
    Pyrochlore materials with novel properties are in demand with multifunctional applications such as optoelectronics, scintillator materials, and theranostics. Many reports have already indicated the importance of the synthesis technique for Nd2Zr2O7 (NZO) nanoparticles (NPs); however, no explanation has been provided for the reason behind the nature of its phase selectivity. Here, we have explored the structural and optical properties of the NZO NPs synthesized by a molten salt synthesis method. We have synthesized size-tunable NZO NPs and correlated the particle size with their structural behavior and optical performance. All NZO NPs are stabilized in defect fluorite phase. Neutron diffraction provided insight on the behavior of oxygen in the presence of heavy atoms. We have collected bright amalgam of blue and green emission on UV irradiation due to the presence of oxygen vacancies from these NPs. We have carried out in situ XRD and Raman investigations to observe the temperature-induced phase transformation in a controlled argon environment. Interestingly, we have not observed phase change for the molten salt synthesized fluorite NZO NPs; however, we observed phase transformation from a precursor stage to pyrochlore phase by in situ XRD directly. These observations provide a new strategy to synthesize nanomaterials phase-selectively for a variety of applications in materials science

    Real-time insight into the multistage mechanism of nanoparticle exsolution from a perovskite host surface

    Get PDF
    The separation of nanoparticles from oxide hosts by exsolution forms the basis for catalytic and energy-related applications. Here, the authors elucidate the multistep mechanism of exsolution at perovskite surfaces by combining real-time electron microscopy and computational methods
    corecore