635 research outputs found

    Flow curvature effects on dynamic behaviour of a novel vertical axis tidal current turbine: numerical and experimental analysis

    Get PDF
    The paper deals with performances analysis of vertical axis turbine to exploit tidal marine currents. Flow curvature effects on performences of a novel vertical axis turbine have been investuigated. It has been shown that the flow curvature effect allows to design properly an accurate airfoil shape to increase turbine performances

    A physically based approach for the estimation of root-zone soil moisture from surface measurements

    Get PDF
    Abstract. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. It was derived from a simplified soil water balance equation for semiarid environments that provides a closed form of the relationship between the root zone and the surface soil moisture with a limited number of physically consistent parameters. The method sheds lights on the mentioned relationship with possible applications in the use of satellite remote sensing retrievals of soil moisture. The proposed approach was used on soil moisture measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The AMMA network was designed with the aim to monitor three so-called mesoscale sites (super sites) located in Benin, Mali, and Niger using point measurements at different locations. Thereafter the new formulation was tested on three additional stations of SCAN in the state of New Mexico (US). Both databases are ideal for the application of such method, because they provide a good description of the soil moisture dynamics at the surface and the root zone using probes installed at different depths. The model was first applied with parameters assigned based on the physical characteristics of several sites. These results highlighted the potential of the methodology, providing a good description of the root-zone soil moisture. In the second part of the paper, the model performances were compared with those of the well-known exponential filter. Results show that this new approach provides good performances after calibration with a set of parameters consistent with the physical characteristics of the investigated areas. The limited number of parameters and their physical interpretation makes the procedure appealing for further applications to other regions

    Application of a model-based rainfall-runoff database as efficient tool for flood risk management

    Get PDF
    A framework for a comprehensive synthetic rainfall-runoff database was developed to study catchment response to a variety of rainfall events. The framework supports effective flood risk assessment and management and implements simple approaches. It consists of three flexible components, a rainfall generator, a continuous rainfallrunoff model, and a database management system. The system was developed and tested at two gauged river sections along the upper Tiber River (central Italy). One of the main questions was to investigate how simple such approaches can be applied without impairing the quality of the results. The rainfall-runoff model was used to simulate runoff on the basis of a large number of rainfall events. The resulting rainfallrunoff database stores pre-simulated events classified on the basis of the rainfall amount, initial wetness conditions and initial discharge. The real-time operational forecasts follow an analogue method that does not need new model simulations. However, the forecasts are based on the simulation results available in the rainfall-runoff database (for the specific class to which the forecast belongs). Therefore, the database can be used as an effective tool to assess possible streamflow scenarios assuming different rainfall volumes for the following days. The application to the study site shows that magnitudes of real flood events were appropriately captured by the database. Further work should be dedicated to introduce a component for taking account of the actual temporal distribution of rainfall events into the stochastic rainfall generator and to the use of different rainfall-runoff models to enhance the usability of the proposed procedure

    Dynamic behavior of novel vertical axis tidal current turbine: numerical and experimental investigations

    Get PDF
    This paper presents a summary of the recent work done by the authors regarding the design, construction and test of a novel patented vertical axis and variable pitching blade hydro turbine, named KOBOLD, capable of harnessing clean and renewable energy from marine tidal currents. The KOBOLDturbine, currently moored in Messina Strait, between mainland Italy and Sicily island, is the only existing turbine of this type devoted to exploit tidal currents, and has a 25% global system efficiency. Theoretical analysis and numerical prediction performanceshave been compared and validated with experimental test results on both model and real scale turbines. Moreover, the recent activities in terms of numerical and experimental investigations on vertical axis hydro turbines are presente

    Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as ‘protein misfolding’ diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1–100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Dynamic Behaviour of the Patented Kobold Tidal Current Turbine: Numerical and Experimental Aspects

    Get PDF
    This paper provides a summary of the work done at DPA on numerical and experimental investigations of a novel patented vertical axis and variable pitching blades hydro turbine designed to harness energy from marine tidal currents. Ponte di Archimede S.p.A. Company, located in Messina, Italy, owns the patented KOBOLD turbine that is moored in the Messina Strait, between the mainland and Sicily. The turbine has a rotor with a diameter of 6 meters, three vertical blades of 5 meters span with a 0.4 m chord ad hoc designed curved airfoil, producing high lift with no cavitation. The rated power is 160 kW with 3.5 m/s current speed, which means 25% global system efficiency. The VAWT and VAWT_DYN computer codes, based on Double Multiple Steamtube, have been developed to predict the steady and dynamic performances of a cycloturbine with fixed or self-acting variable pitch straight-blades. A theoretical analysis and a numerical prediction of the turbine performances as well as experimental test results on both a model and the real scale turbine will be presented and discussed.

    In Situ Characterisation of Permanent Magnetic Quadrupoles for focussing proton beams

    Full text link
    High intensity laser driven proton beams are at present receiving much attention. The reasons for this are many but high on the list is the potential to produce compact accelerators. However two of the limitations of this technology is that unlike conventional nuclear RF accelerators lasers produce diverging beams with an exponential energy distribution. A number of different approaches have been attempted to monochromise these beams but it has become obvious that magnetic spectrometer technology developed over many years by nuclear physicists to transport and focus proton beams could play an important role for this purpose. This paper deals with the design and characterisation of a magnetic quadrupole system which will attempt to focus and transport laser-accelerated proton beams.Comment: 20 pages, 42 figure

    First study on the peptidergic innervation of the brain superior sagittal sinus in humans.

    Get PDF
    The superior sagittal sinus (SSS) of the mammalian brain is a pain-sensitive intracranial vessel thought to play a role in the pathogenesis of migraine headaches. Here, we aimed to investigate the presence and the potential co-localization of some neurotransmitters in the human SSS. Immunohistochemical and double-labeling immunofluorescence analyses were applied to paraformaldehyde-fixed, paraffin-embedded, coronal sections of the SSS. Protein extraction and Western blotting technique were performed on the same material to confirm the morphological data. Our results showed nerve fibers clustered mainly in large bundles tracking parallel to the longitudinal axis of the sinus, close in proximity to the vascular endothelium. Smaller fascicles of fibers encircled the vascular lumen in a spiral fashion, extending through the subendothelial connective tissue. Isolated nerve fibers were observed around the openings of bridging veins in the sinus or around small vessels extending into the perisinusal dura. The neurotransmitters calcitonin gene related peptide (CGRP), substance P (SP), neuronal nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and neuropeptide Y (NPY) were found in parietal nerve structures, distributed all along the length of the SSS. Overall, CGRP- and TH-containing nerve fibers were the most abundant. Neurotransmitters co-localized in the same fibers in the following pairs: CGRP/SP, CGRP/NOS, CGRP/VIP, and TH/NPY. Western blotting analysis confirmed the presence of such neurosubstances in the SSS wall. Overall our data provide the first evidence of the presence and co-localization of critical neurotransmitters in the SSS of the human brain, thus contributing to a better understanding of the sinus functional role
    corecore