689 research outputs found

    Flow curvature effects on dynamic behaviour of a novel vertical axis tidal current turbine: numerical and experimental analysis

    Get PDF
    The paper deals with performances analysis of vertical axis turbine to exploit tidal marine currents. Flow curvature effects on performences of a novel vertical axis turbine have been investuigated. It has been shown that the flow curvature effect allows to design properly an accurate airfoil shape to increase turbine performances

    Tannin Structural Elucidation and Quantitative P-31 NMR Analysis. 1. Model Compounds

    Get PDF
    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The P-31 NMR analysis of P-31 labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series

    Dynamic Behaviour of the Patented Kobold Tidal Current Turbine: Numerical and Experimental Aspects

    Get PDF
    This paper provides a summary of the work done at DPA on numerical and experimental investigations of a novel patented vertical axis and variable pitching blades hydro turbine designed to harness energy from marine tidal currents. Ponte di Archimede S.p.A. Company, located in Messina, Italy, owns the patented KOBOLD turbine that is moored in the Messina Strait, between the mainland and Sicily. The turbine has a rotor with a diameter of 6 meters, three vertical blades of 5 meters span with a 0.4 m chord ad hoc designed curved airfoil, producing high lift with no cavitation. The rated power is 160 kW with 3.5 m/s current speed, which means 25% global system efficiency. The VAWT and VAWT_DYN computer codes, based on Double Multiple Steamtube, have been developed to predict the steady and dynamic performances of a cycloturbine with fixed or self-acting variable pitch straight-blades. A theoretical analysis and a numerical prediction of the turbine performances as well as experimental test results on both a model and the real scale turbine will be presented and discussed.

    A physically based approach for the estimation of root-zone soil moisture from surface measurements

    Get PDF
    Abstract. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. It was derived from a simplified soil water balance equation for semiarid environments that provides a closed form of the relationship between the root zone and the surface soil moisture with a limited number of physically consistent parameters. The method sheds lights on the mentioned relationship with possible applications in the use of satellite remote sensing retrievals of soil moisture. The proposed approach was used on soil moisture measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The AMMA network was designed with the aim to monitor three so-called mesoscale sites (super sites) located in Benin, Mali, and Niger using point measurements at different locations. Thereafter the new formulation was tested on three additional stations of SCAN in the state of New Mexico (US). Both databases are ideal for the application of such method, because they provide a good description of the soil moisture dynamics at the surface and the root zone using probes installed at different depths. The model was first applied with parameters assigned based on the physical characteristics of several sites. These results highlighted the potential of the methodology, providing a good description of the root-zone soil moisture. In the second part of the paper, the model performances were compared with those of the well-known exponential filter. Results show that this new approach provides good performances after calibration with a set of parameters consistent with the physical characteristics of the investigated areas. The limited number of parameters and their physical interpretation makes the procedure appealing for further applications to other regions

    Application of a model-based rainfall-runoff database as efficient tool for flood risk management

    Get PDF
    A framework for a comprehensive synthetic rainfall-runoff database was developed to study catchment response to a variety of rainfall events. The framework supports effective flood risk assessment and management and implements simple approaches. It consists of three flexible components, a rainfall generator, a continuous rainfallrunoff model, and a database management system. The system was developed and tested at two gauged river sections along the upper Tiber River (central Italy). One of the main questions was to investigate how simple such approaches can be applied without impairing the quality of the results. The rainfall-runoff model was used to simulate runoff on the basis of a large number of rainfall events. The resulting rainfallrunoff database stores pre-simulated events classified on the basis of the rainfall amount, initial wetness conditions and initial discharge. The real-time operational forecasts follow an analogue method that does not need new model simulations. However, the forecasts are based on the simulation results available in the rainfall-runoff database (for the specific class to which the forecast belongs). Therefore, the database can be used as an effective tool to assess possible streamflow scenarios assuming different rainfall volumes for the following days. The application to the study site shows that magnitudes of real flood events were appropriately captured by the database. Further work should be dedicated to introduce a component for taking account of the actual temporal distribution of rainfall events into the stochastic rainfall generator and to the use of different rainfall-runoff models to enhance the usability of the proposed procedure

    Dynamic behavior of novel vertical axis tidal current turbine: numerical and experimental investigations

    Get PDF
    This paper presents a summary of the recent work done by the authors regarding the design, construction and test of a novel patented vertical axis and variable pitching blade hydro turbine, named KOBOLD, capable of harnessing clean and renewable energy from marine tidal currents. The KOBOLDturbine, currently moored in Messina Strait, between mainland Italy and Sicily island, is the only existing turbine of this type devoted to exploit tidal currents, and has a 25% global system efficiency. Theoretical analysis and numerical prediction performanceshave been compared and validated with experimental test results on both model and real scale turbines. Moreover, the recent activities in terms of numerical and experimental investigations on vertical axis hydro turbines are presente

    Toward the estimation of river discharge variations using MODIS data in ungauged basins

    Get PDF
    This study investigates the capability of the Moderate resolution Imaging Spectroradiometer (MODIS) to estimate river discharge, even for ungauged sites. Because of its frequent revisits (as little as every 3 h) and adequate spatial resolution (250 m), MODIS bands 1 and 2 have significant potential for mapping the extent of flooded areas and estimating river discharge even for medium-sized basins. Specifically, the different behaviour of water and land in the Near Infrared (NIR) portion of the electromagnetic spectrum is exploited by computing the ratio (C/M) of the MODIS channel 2 reflectance values between two pixels located within (M) and outside (C), but close to, the river. The values of C/M increase with the presence of water and, hence, with discharge. Moreover, in order to reduce the noise effects due to atmospheric contribution, an exponential smoothing filter is applied, thus obtaining C/M⁎. Time series of hourly mean flow velocity and discharge between 2005 and 2011 measured at four gauging stations located along the Po river (Northern Italy) are employed for testing the capability of C/M⁎ to estimate discharge/flow velocity. Specifically, the meanders and urban areas are considered the best locations for the position of the pixels M and C, respectively. Considering the optimal pixels, the agreement between C/M⁎ and discharge/flow velocity is fairly good with values in the range of 0.65–0.77. Additionally, the application to ungauged sites is tested by deriving a unique regional relationship between C/M⁎ and flow velocity valid for the whole Po river and providing only a slight deterioration of the performance. Finally, the sensitivity of the results to the selection of the C and M pixels is investigated by randomly changing their location. Also in this case, the agreement with in situ observations of velocity is fairly satisfactory (r ~ 0.6). The obtained results demonstrate the capability of MODIS to monitor discharge (and flow velocity). Therefore, its application for a larger number of sites worldwide will be the object of future studies
    corecore