5 research outputs found

    Quality metrics for the evaluation of Rapid Response Systems: Proceedings from the third international consensus conference on Rapid Response Systems.

    Get PDF
    BACKGROUND: Clinically significant deterioration of patients admitted to general wards is a recognized complication of hospital care. Rapid Response Systems (RRS) aim to reduce the number of avoidable adverse events. The authors aimed to develop a core quality metric for the evaluation of RRS. METHODS: We conducted an international consensus process. Participants included patients, carers, clinicians, research scientists, and members of the International Society for Rapid Response Systems with representatives from Europe, Australia, Africa, Asia and the US. Scoping reviews of the literature identified potential metrics. We used a modified Delphi methodology to arrive at a list of candidate indicators that were reviewed for feasibility and applicability across a broad range of healthcare systems including low and middle-income countries. The writing group refined recommendations and further characterized measurement tools. RESULTS: Consensus emerged that core outcomes for reporting for quality improvement should include ten metrics related to structure, process and outcome for RRS with outcomes following the domains of the quadruple aim. The conference recommended that hospitals should collect data on cardiac arrests and their potential predictability, timeliness of escalation, critical care interventions and presence of written treatment goals for patients remaining on general wards. Unit level reporting should include the presence of patient activated rapid response and metrics of organizational culture. We suggest two exploratory cost metrics to underpin urgently needed research in this area. CONCLUSION: A consensus process was used to develop ten metrics for better understanding the course and care of deteriorating ward patients. Others are proposed for further development

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore