64 research outputs found

    Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation

    Get PDF
    During the operational phase of the ICARTT field experiment in 2004, the regional air quality model STEM showed a strong positive surface bias and a negative upper troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point sources inventory update), and modifying boundary conditions, low-level model bias decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to −0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global models decrease the upper troposphere negative ozone bias, while accounting for biomass burning emissions improved model performance for CO. The covariances of ozone bias were highly correlated to NOz, NOy, and HNO3 biases. Interpolation of bias information through kriging showed that decreasing emissions in SE United States would reduce regional ozone model bias and improve model correlation coefficients. The spatial distribution of forecast errors was analyzed using kriging, which identified distinct features, which when compared to errors in postanalysis simulations, helped document improvements. Changes in dry deposition to crops were shown to reduce substantially high bias in the forecasts in the Midwest, while updated emissions were shown to account for decreases in bias in the eastern United States. Observed and modeled ozone production efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting that recurring ozone bias is due to overestimation of NOx emissions. Sensitivity studies showed that ozone formation in the United States is most sensitive to NOx emissions, followed by VOCs and CO. PAN as a reservoir of NOx can contribute to a significant amount of surface ozone through thermal decomposition

    Protein-Protein Interactions within Late Pre-40S Ribosomes

    Get PDF
    Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps

    Improving regional ozone modeling through systematic evaluation of errors using the aircraft observations during the International Consortium for Atmospheric Research on Transport and Transformation

    Get PDF
    During the operational phase of the ICARTT field experiment in 2004, the regional air quality model STEM showed a strong positive surface bias and a negative upper troposphere bias (compared to observed DC-8 and WP-3 observations) with respect to ozone. After updating emissions from NEI 1999 to NEI 2001 (with a 2004 large point sources inventory update), and modifying boundary conditions, low-level model bias decreases from 11.21 to 1.45 ppbv for the NASA DC-8 observations and from 8.26 to -0.34 for the NOAA WP-3. Improvements in boundary conditions provided by global models decrease the upper troposphere negative ozone bias, while accounting for biomass burning emissions improved model performance for CO. The covariances of ozone bias were highly correlated to NOz, NOy, and HNO3biases. Interpolation of bias information through kriging showed that decreasing emissions in SE United States would reduce regional ozone model bias and improve model correlation coefficients. The spatial distribution of forecast errors was analyzed using kriging, which identified distinct features, which when compared to errors in postanalysis simulations, helped document improvements. Changes in dry deposition to crops were shown to reduce substantially high bias in the forecasts in the Midwest, while updated emissions were shown to account for decreases in bias in the eastern United States. Observed and modeled ozone production efficiencies for the DC-8 were calculated and shown to be very similar (7.8) suggesting that recurring ozone bias is due to overestimation of NOxemissions. Sensitivity studies showed that ozone formation in the United States is most sensitive to NOxemissions, followed by VOCs and CO. PAN as a reservoir of NOxcan contribute to a significant amount of surface ozone through thermal decomposition

    Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain

    Get PDF
    Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of ch

    Your Input Wanted

    No full text
    • …
    corecore