11 research outputs found

    Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role

    Get PDF
    This work was financed by FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020-Operational Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT-Fundação para a CiĂȘncia e a Tecnologia/MinistĂ©rio da CiĂȘncia (FCT), Tecnologia e Ensino Superior in the framework of FCT-ANR/NEU-NMC/0022/2012 grant, PTDC/MEC-NEU/28750/2017 grant, Applied Molecular Biosciences Unit-UCIBIO (UID/Multi/04378/2019) grant; LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy; and FCT provided individual financial support to NLS (PD/BD/127819/2016), BFM (PD/BD/128336/2017) and HLAV (IF/00185/2012).Microglia, the ‘resident immunocompetent cells’ of the central nervous system (CNS), are key players in innate immunity, synaptic refinement and homeostasis. Dysfunctional microglia contribute heavily to creating a toxic inflammatory milieu, a driving factor in the pathophysiology of several CNS disorders. Therefore, strategies to modulate the microglial function are required to tackle exacerbated tissue inflammation. Carbon monoxide (CO), an endogenous gaseous molecule produced by the degradation of haem, has anti-inflammatory, anti-apoptotic, and pro-homeostatic and cytoprotective roles, among others. ALF-826A, a novel molybdenum-based CO-releasing molecule, was used for the assessment of neuron-microglia remote communication. Primary cultures of rat microglia and neurons, or the BV-2 microglial and CAD neuronal murine cell lines, were used to study the microglia-neuron interaction. An approach based on microglial-derived conditioned media in neuronal culture was applied. Medium derived from CO-treated microglia provided indirect neuroprotection against inflammation by limiting the lipopolysaccharide (LPS)-induced expression of reactivity markers (CD11b), the production of reactive oxygen species (ROS) and the secretion of inflammatory factors (TNF-α, nitrites). This consequently prevented neuronal cell death and maintained neuronal morphology. In contrast, in the absence of inflammatory stimulus, conditioned media from CO-treated microglia improved neuronal morphological complexity, which is an indirect manner of assessing neuronal function. Likewise, the microglial medium also prevented neuronal cell death induced by pro-oxidant tert-Butyl hydroperoxide (t-BHP). ALF-826 treatment reinforced microglia secretion of Interleukin-10 (IL-10) and adenosine, mediators that may protect against t-BHP stress in this remote communication model. Chemical inhibition of the adenosine receptors A2A and A1 reverted the CO-derived neuroprotective effect, further highlighting a role for CO in regulating neuron-microglia communication via purinergic signalling. Our findings indicate that CO has a modulatory role on microglia-to-neuron communication, promoting neuroprotection in a non-cell autonomous manner. CO enhances the microglial release of neurotrophic factors and blocks exacerbated microglial inflammation. CO improvement of microglial neurotrophism under non-inflammatory conditions is here described for the first time.publishersversionepub_ahead_of_prin

    Moldagem por compressĂŁo a frio do polietileno de ultra alto peso molecular. Parte 1: influĂȘncia do tamanho, distribuição e morfologia da partĂ­cula na densidade a verde Cold compression molding of ultra high molecular weight polyethylene. Part 1: influence of the size, distribution and morphology of particles on the green density

    No full text
    Neste trabalho foram investigadas as caracterĂ­sticas de amostras de pĂł de polietileno de ultra alto peso molecular (PEUAPM), tais como porosidade, morfologia, tamanho mĂ©dio e distribuição de partĂ­cula, que sĂŁo importantes na moldagem por compressĂŁo a frio. TambĂ©m foi avaliada a influĂȘncia dessas caracterĂ­sticas na densidade a verde de prĂ©-formas. As amostras dos pĂłs foram caracterizadas por calorimetria diferencial de varredura (DSC), anĂĄlise granulomĂ©trica, absorção de Ăłleo, ĂĄrea superficial, porosimetria de mercĂșrio, fluidez do pĂł, densidade de compactação, densidade aparente e microscopia eletrĂŽnica de varredura (MEV). AtravĂ©s das tĂ©cnicas de caracterização estudadas ficou evidenciado que as caracterĂ­sticas da partĂ­cula citadas anteriormente, assim como o parĂąmetro de densificação (DP), que Ă© função direta da porosidade interparticular, favorecem a densidade a verde relativa (DVR) e consequentemente a tensĂŁo de resistĂȘncia Ă  flexĂŁo (TRF).In this paper an investigation was made of the characteristics of Ultra High Molecular Weight Polyethylene (UHMWPE) powder samples, including porosity, particles average size, size distribution and morphology, which are important in cold compression molding. The influence of these characteristics on the green density of molded pre-shapes was also investigated. The UHMWPE powder samples were characterized by Differential Scanning Calorimetry (DSC), granulometric analysis, oil absorption, surface area, mercury porosity, density compaction, apparent density and Scanning Electron Microscopy (SEM). The characterization techniques used demonstrate that the UHMWPE particles characteristics cited above as well as the densification parameter (DP), which is a direct function of the interparticles porosity, affect the relative green density (RGD) and hence, the flexural tensile strength (FTS)

    Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - A randomized clinical trial

    No full text
    IMPORTANCE: The effects of recruitment maneuvers and positive end-expiratory pressure (PEEP) titration on clinical outcomes in patients with acute respiratory distress syndrome (ARDS) remain uncertain. OBJECTIVE: To determine if lung recruitment associated with PEEP titration according to the best respiratory-system compliance decreases 28-day mortality of patients with moderate to severe ARDS compared with a conventional low-PEEP strategy. DESIGN, SETTING, AND PARTICIPANTS: Multicenter, randomized trial conducted at 120 intensive care units (ICUs) from 9 countries from November 17, 2011, through April 25, 2017, enrolling adults with moderate to severe ARDS. INTERVENTIONS: An experimental strategy with a lung recruitment maneuver and PEEP titration according to the best respiratory-system compliance (n = 501; experimental group) or a control strategy of low PEEP (n = 509). All patients received volume-assist control mode until weaning. MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality until 28 days. Secondary outcomes were length of ICU and hospital stay; ventilator-free days through day 28; pneumothorax requiring drainage within 7 days; barotrauma within 7 days; and ICU, in-hospital, and 6-month mortality. RESULTS: A total of 1010 patients (37.5% female; mean [SD] age, 50.9 [17.4] years) were enrolled and followed up. At 28 days, 277 of 501 patients (55.3%) in the experimental group and 251 of 509 patients (49.3%) in the control group had died (hazard ratio [HR], 1.20; 95% CI, 1.01 to 1.42; P = .041). Compared with the control group, the experimental group strategy increased 6-month mortality (65.3% vs 59.9%; HR, 1.18; 95% CI, 1.01 to 1.38; P = .04), decreased the number of mean ventilator-free days (5.3 vs 6.4; difference, −1.1; 95% CI, −2.1 to −0.1; P = .03), increased the risk of pneumothorax requiring drainage (3.2% vs 1.2%; difference, 2.0%; 95% CI, 0.0% to 4.0%; P = .03), and the risk of barotrauma (5.6% vs 1.6%; difference, 4.0%; 95% CI, 1.5% to 6.5%; P = .001). There were no significant differences in the length of ICU stay, length of hospital stay, ICU mortality, and in-hospital mortality. CONCLUSIONS AND RELEVANCE: In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality. These findings do not support the routine use of lung recruitment maneuver and PEEP titration in these patients. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01374022

    Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study

    No full text
    Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27–33), representing 0·14 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7·6 mL/kg PBW [IQR 6·7–9·1] vs 7·9 mL/kg PBW [6·8–9·1]; p=0·346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6·0 cm H2O [IQR 5·0–8·0] vs 5·0 cm H2O [5·0–7·0]; p<0·0001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0·004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0·0001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0·0001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0·0001). VT did not differ between patients who did and did not develop ARDS (p=0·471 for those at risk of ARDS; p=0·323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS

    Epidemiological characteristics, practice of ventilation, and clinical outcome in patients at risk of acute respiratory distress syndrome in intensive care units from 16 countries (PRoVENT): an international, multicentre, prospective study

    No full text
    Background Scant information exists about the epidemiological characteristics and outcome of patients in the intensive care unit (ICU) at risk of acute respiratory distress syndrome (ARDS) and how ventilation is managed in these individuals. We aimed to establish the epidemiological characteristics of patients at risk of ARDS, describe ventilation management in this population, and assess outcomes compared with people at no risk of ARDS. Methods PRoVENT (PRactice of VENTilation in critically ill patients without ARDS at onset of ventilation) is an international, multicentre, prospective study undertaken at 119 ICUs in 16 countries worldwide. All patients aged 18 years or older who were receiving mechanical ventilation in participating ICUs during a 1-week period between January, 2014, and January, 2015, were enrolled into the study. The Lung Injury Prediction Score (LIPS) was used to stratify risk of ARDS, with a score of 4 or higher defining those at risk of ARDS. The primary outcome was the proportion of patients at risk of ARDS. Secondary outcomes included ventilatory management (including tidal volume [VT] expressed as mL/kg predicted bodyweight [PBW], and positive end-expiratory pressure [PEEP] expressed as cm H2O), development of pulmonary complications, and clinical outcomes. The PRoVENT study is registered at ClinicalTrials.gov, NCT01868321. The study has been completed. Findings Of 3023 patients screened for the study, 935 individuals fulfilled the inclusion criteria. Of these critically ill patients, 282 were at risk of ARDS (30%, 95% CI 27\u201333), representing 0\ub714 cases per ICU bed over a 1-week period. VT was similar for patients at risk and not at risk of ARDS (median 7\ub76 mL/kg PBW [IQR 6\ub77\u20139\ub71] vs 7\ub79 mL/kg PBW [6\ub78\u20139\ub71]; p=0\ub7346). PEEP was higher in patients at risk of ARDS compared with those not at risk (median 6\ub70 cm H2O [IQR 5\ub70\u20138\ub70] vs 5\ub70 cm H2O [5\ub70\u20137\ub70]; p<0\ub70001). The prevalence of ARDS in patients at risk of ARDS was higher than in individuals not at risk of ARDS (19/260 [7%] vs 17/556 [3%]; p=0\ub7004). Compared with individuals not at risk of ARDS, patients at risk of ARDS had higher in-hospital mortality (86/543 [16%] vs 74/232 [32%]; p<0\ub70001), ICU mortality (62/533 [12%] vs 66/227 [29%]; p<0\ub70001), and 90-day mortality (109/653 [17%] vs 88/282 [31%]; p<0\ub70001). VT did not differ between patients who did and did not develop ARDS (p=0\ub7471 for those at risk of ARDS; p=0\ub7323 for those not at risk). Interpretation Around a third of patients receiving mechanical ventilation in the ICU were at risk of ARDS. Pulmonary complications occur frequently in patients at risk of ARDS and their clinical outcome is worse compared with those not at risk of ARDS. There is potential for improvement in the management of patients without ARDS. Further refinements are needed for prediction of ARDS
    corecore