1,815 research outputs found

    Friedmann universe with dust and scalar field

    Full text link
    We study a spatially flat Friedmann model containing a pressureless perfect fluid (dust) and a scalar field with an unbounded from below potential of the form V(\fii)=W_0 - V_0\sinh(\sqrt{3/2}\kappa\fii), where the parameters W0W_0 and V0V_0 are arbitrary and κ=8πGN=Mp1\kappa=\sqrt{8\pi G_N}=M_p^{-1}. The model is integrable and all exact solutions describe the recollapsing universe. The behavior of the model near both initial and final points of evolution is analyzed. The model is consistent with the observational parameters. We single out the exact solution with the present-day values of acceleration parameter q0=0.5q_0=0.5 and dark matter density parameter Ωρ0=0.3\Omega_{\rho 0}=0.3 describing the evolution within the time approximately equal to 2H012H_0^{-1}.Comment: 11 pages, 10 figure

    Black Holes in AdS/BCFT and Fluid/Gravity Correspondence

    Get PDF
    A proposal to describe gravity duals of conformal theories with boundaries (AdS/BCFT correspondence) was put forward by Takayanagi few years ago. However interesting solutions describing field theories at finite temperature and charge density are still lacking. In this paper we describe a class of theories with boundary, which admit black hole type gravity solutions. The theories are specified by stress-energy tensors that reside on the extensions of the boundary to the bulk. From this perspective AdS/BCFT appears analogous to the fluid/gravity correspondence. Among the class of the boundary extensions there is a special (integrable) one, for which the stress-energy tensor is fluid-like. We discuss features of that special solution as well as its thermodynamic properties.Comment: 18 pages, 4 figures (7 pdf-files). Save and view with Adobe Reader if images appear corrupted in the browse

    QCD corrections to tri-boson production

    Get PDF
    We present a computation of the next-to-leading order QCD corrections to the production of three Z bosons at the LHC. We calculate these corrections using a completely numerical method that combines sector decomposition to extract infrared singularities with contour deformation of the Feynman parameter integrals to avoid internal loop thresholds. The NLO QCD corrections to pp -> ZZZ are approximately 50%, and are badly underestimated by the leading order scale dependence. However, the kinematic dependence of the corrections is minimal in phase space regions accessible at leading order.Comment: 15 pages, 3 figures; typos fixed, references and event listing adde

    Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave

    Get PDF
    We consider emission of a photon by an electron in the field of a strong laser wave. Polarization effects in this process are important for a number of physical problems. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and photon-electron colliders.Comment: 18 pages, minor changes, published versio
    corecore