698 research outputs found

    Initial results on fault diagnosis of DSN antenna control assemblies using pattern recognition techniques

    Get PDF
    Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature

    Failure monitoring in dynamic systems: Model construction without fault training data

    Get PDF
    Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic

    Parameter and configuration study of the DSS-13 antenna drives

    Get PDF
    The effects of different elevation and azimuth drive configurations on DSS-13 antenna performance are presented as well as a study of gearbox stiffness and motor inertia. Small motor inertia and rigid gearboxes would improve the pointing accuracy up to a certain limit. The limit is imposed by critical values of gearbox stiffness and motor inertia introduced in the article. The critical values depend on the lowest structural frequency of the rate-loop model. The tracking performance can be improved by raising gearbox stiffness to the critical stiffness and reducing motor inertia to the critical inertia. An azimuth drive configuration with four driven wheels was also investigated. For the four-wheel drive configuration in azimuth, the cross-coupling effects are reduced and wind disturbance rejection properties improved. Pointing is improved substantially in the cross-elevation but is relatively unaffected in the elevation direction. More significant improvements can be achieved through either structural redesign (stiffening the structure) or new control algorithms or control concepts, which would eliminate the effect of flexible deformations on the antenna pointing accuracy. Although the study is performed for the DSS-13 antenna, the results can be extended for other DSN antennas

    Real-time antenna fault diagnosis experiments at DSS 13

    Get PDF
    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential

    Elevation control system model for the DSS 13 antenna

    Get PDF
    In order to meet the requirements for precision pointing of 34-m antennas, adequate control design and simulation software have to be developed along with a detailed description of the supporting analytical tools. This article describes a control system model for the elevation drive of the DSS 13 antenna. The model allows one to simulate elevation dynamics, cross-coupled dynamics in azimuth and elevation, and RF pointing error. A modal state-space model of the antenna structure was obtained from its finite-element model with a free rotating tipping structure. Model reduction techniques were applied separately for the antenna model and rate-loop model, thereby reducing the system order to one-third of the original one while preserving its dynamic properties. Extensive simulation results illustrate properties of the model

    Beam-waveguide antenna servo design issues for tracking low earth-orbiting satellites

    Get PDF
    Upcoming NASA missions will require tracking of low-orbit satellites. As a consequence, NASA antennas will be required to track satellites at higher rates than for the current deep space missions. This article investigates servo design issues for the 34-m beam-waveguide antennas that track low-orbit satellites. This includes upgrading the servo with a feedforward loop, using a monopulse controller design, and reducing tracking errors through either proper choice of elevation pinion location, application of a notch filter, or adjustment of the elevation drive amplifier gain. Finally, improvement of the signal-to-noise ratio through averaging of the over-sampled monopulse signal is described

    First Call for Help? Southwest: Building Regional Identity Project.

    Get PDF
    Prepared in partnership with First Call for Help Southwest by the Community Assistantship Program (CAP) administered by the Center for Urban and Regional Affairs, University of Minnesota

    Field verification of the wind tunnel coefficients

    Get PDF
    Accurate information about wind action on antennas is required for reliable prediction of antenna pointing errors in windy weather and for the design of an antenna controller with wind disturbance rejection properties. The wind tunnel data obtained 3 years ago using a scaled antenna model serves as an antenna industry standard, frequently used for the first purpose. The accuracy of the wind tunnel data has often been challenged, since they have not yet been tested in a field environment (full-aized antenna, real wind, actual terrain, etc.). The purpose of this investigation was to obtain selected field measurements and compare them with the available wind tunnel data. For this purpose, wind steady-state torques of the DSS-13 antenna were measured, and dimensionless wind torque coefficients were obtained for a variety of yaw and elevation angles. The results showed that the differences between the wind tunnel torque coefficients and the field torque coefficients were less than 10 percent of their values. The wind-gusting action on the antenna was characterized by the power spectra of the antenna encoder and the antenna torques. The spectra showed that wind gusting primarily affects the antenna principal modes

    Are we doing young people a service or disservice? And does local church youth ministry work?

    Get PDF
    This paper asks some pertinent questions about the purpose of Christian youth work and ministry and the role of the Christian youth worker in the context of declining participation by 18–30s in church activities. It also examines issues of adolescent rites of passage, behaviour management and social control, and considers what some of the implications might be for the mission and discipleship of young people.Publisher PD
    • …
    corecore