3,712 research outputs found

    Increased surface flashover voltage in microfabricated devices

    Get PDF
    With the demand for improved performance in microfabricated devices, the necessity to apply greater electric fields and voltages becomes evident. When operating in vacuum, the voltage is typically limited by surface flashover forming along the surface of a dielectric. By modifying the fabrication process we have discovered it is possible to more than double the flashover voltage. Our finding has significant impact on the realization of next-generation micro- and nano-fabricated devices and for the fabrication of on-chip ion trap arrays for the realization of scalable ion quantum technology

    Cauchy horizon singularity without mass inflation

    Full text link
    A perturbed Reissner-Nordstr\"om-de Sitter solution is used to emphasize the nature of the singularity along the Cauchy horizon of a charged spherically symmetric black hole. For these solutions, conditions may prevail under which the mass function is bounded and yet the curvature scalar RαβγδRαβγδR_{\alpha\beta\gamma\delta} R^{\alpha\beta\gamma\delta} diverges.Comment: typeset in RevTex, 13 page

    1980 summer study program in geophysical fluid dynamics : coherent features in geophysical flows

    Get PDF
    Four principal lecturers shored the task of presenting the subject "Coherent Features in Geophysical Flows" to the participants of the twenty-second geophysical fluid dynamics summer program. Glenn Flierl introduced the topic and the Kortweg-de Vries equation via a model of finite amplitude motions on the beta plane. He extended the analysis to more complex flows in the ocean and the atmosphere and in the process treated motions of very large amplitude. Larry Redekopp's three lectures summarized an extensive body of the mathematical literature on coherent features. Andrew Ingersoll focussed on the many fascinating features in Jupiter's atmosphere. Joseph Keller supplemented an interesting summary of laboratory observations with suggestive models for treating the flows.Office of Naval Research under Contract N00014-79-C-067

    1979 summer study program in geophysical fluid dynamics : the Woods Hole Oceanographic Institution : notes on polar oceanography

    Get PDF
    The emphasis in this year's GFD program has been somewhat different from the past. We have tried to expose a theoretically oriented audience to the new body of observations pertaining to the Arctic and Antarctic circulation. We have, however, not departed from our traditional goal of encouraging broad based inquiries into the field of Geophysical Fluid Dynamics. We would like to believe that the breadth of interest and enthusiasm exhibited in these reports will stimulate future work in Polar Oceanography and Fluid Dynamics.Office of Naval Research under Contract N00014-79-C-067

    Dissipation due to tunneling two-level systems in gold nanomechanical resonators

    Full text link
    We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements on beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as T0.5T^{0.5}, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems

    Effects of caffeine on reading performance on the Visagraph2

    Get PDF
    Caffeine is a drug that wakes people up and stimulates the central nervous system. It is frequently found in many beverages and other consumed products. It also comes as an over-the-counter supplement. Since it is so common and gets used to help people stay awake during reading tasks, we wanted to see what effect it has on comprehension, attention and eye movements when reading. To do this we screened 27 optometry students for health problems and tested them twice on the Visagraph2, an instrument that objectively monitors eye movements and tests comprehension of material read. Tests were conducted when subjects had no caffeine in their system and when caffeine was at its highest concentration in their blood. Some started on caffeine and others did not in an attempt to limit a learning affect. In an analysis of our data, we found better performance when not on caffeine that was statistically significant in the number of fixations, regressions and percent of directional attack. Span of recognition, comprehension, rate with comprehension and grade level efficiency were also better when not on caffeine, but they were not statistically significant. Reading rate without comprehension was slower and the average duration of fixation was longer when not on caffeine. However, since comprehension was better and their were fewer fixations when not on caffeine it can be concluded that caffeine made reading more erratic and less efficient. In short, not using caffeine makes reading more efficient and improves comprehension. Using caffeine makes reading quicker, but less efficient and decreases comprehension. This means that caffeine keeps the mind and body awake, but may not make you a better reader

    Wavelet transform-based de-noising for two-photon imaging of synaptic Ca2+ transients.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThis is an open access article.Postsynaptic Ca(2+) transients triggered by neurotransmission at excitatory synapses are a key signaling step for the induction of synaptic plasticity and are typically recorded in tissue slices using two-photon fluorescence imaging with Ca(2+)-sensitive dyes. The signals generated are small with very low peak signal/noise ratios (pSNRs) that make detailed analysis problematic. Here, we implement a wavelet-based de-noising algorithm (PURE-LET) to enhance signal/noise ratio for Ca(2+) fluorescence transients evoked by single synaptic events under physiological conditions. Using simulated Ca(2+) transients with defined noise levels, we analyzed the ability of the PURE-LET algorithm to retrieve the underlying signal. Fitting single Ca(2+) transients with an exponential rise and decay model revealed a distortion of τ(rise) but improved accuracy and reliability of τ(decay) and peak amplitude after PURE-LET de-noising compared to raw signals. The PURE-LET de-noising algorithm also provided a ∼30-dB gain in pSNR compared to ∼16-dB pSNR gain after an optimized binomial filter. The higher pSNR provided by PURE-LET de-noising increased discrimination accuracy between successes and failures of synaptic transmission as measured by the occurrence of synaptic Ca(2+) transients by ∼20% relative to an optimized binomial filter. Furthermore, in comparison to binomial filter, no optimization of PURE-LET de-noising was required for reducing arbitrary bias. In conclusion, the de-noising of fluorescent Ca(2+) transients using PURE-LET enhances detection and characterization of Ca(2+) responses at central excitatory synapses.C.M.T. and J.R.M. were supported by the Wellcome Trust, and K.T.-A. was supported by grant No. EP/I018638/1 from the Engineering and Physical Sciences Research Council

    Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ejn.13582 This article is protected by copyright. All rights reserved.Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer’s disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of Accepted Article This article is protected by copyright. All rights reserved. excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and supresses both excitatory and inhibitory synaptic transmission but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically -induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarization, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose -dependent manner by acting primarily through muscarinic M1 receptorsThis work was supported by the Wellcome Trust Neural Dynamics PhD programme (RTB) and the Wellcome Trust (JRM). We thank Eli Lilly and Co. for gifts of GSK -5 and M1 receptor knockout mice. We thank members of the Mellor lab for helpful discussions and J. Brown for comments on previous versions of the manuscript. The authors declare no competing financial interests

    Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator

    Get PDF
    We present results from a study of the nonlinear intermodal coupling between different flexural vibrational modes of a single high-stress, doubly-clamped silicon nitride nanomechanical beam. The measurements were carried out at 100 mK and the beam was actuated using the magnetomotive technique. We observed the nonlinear behavior of the modes individually and also measured the coupling between them by driving the beam at multiple frequencies. We demonstrate that the different modes of the resonator are coupled to each other by the displacement induced tension in the beam, which also leads to the well known Duffing nonlinearity in doubly-clamped beams.Comment: 15 pages, 7 figure
    • …
    corecore