4,020 research outputs found

    Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes

    Full text link
    In the past, a maximum-entropy model was introduced and applied to the study of statistical scattering by chaotic cavities, when short paths may play an important role in the scattering process. In particular, the validity of the model was investigated in relation with the statistical properties of the conductance in open chaotic cavities. In this article we investigate further the validity of the maximum-entropy model, by comparing the theoretical predictions with the results of computer simulations, in which the Schroedinger equation is solved numerically inside the cavity for one and two open channels in the leads; we analyze, in addition to the conductance, the zero-frequency limit of the shot-noise power spectrum. We also obtain theoretical results for the ensemble average of this last quantity, for the orthogonal and unitary cases of the circular ensemble and an arbitrary number of channels. Generally speaking, the agreement between theory and numerics is good. In some of the cavities that we study, short paths consist of whispering gallery modes, which were excluded in previous studies. These cavities turn out to be all the more interesting, as it is in relation with them that we found certain systematic discrepancies in the comparison with theory. We give evidence that it is the lack of stationarity inside the energy interval that is analyzed, and hence the lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement between theory and numerical simulations is improved when the energy interval is reduced to a point and the statistics is then collected over an ensemble. It thus appears that the maximum-entropy model is valid beyond the domain where it was originally derived. An understanding of this situation is still lacking at the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure

    Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation

    Full text link
    In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr. vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus-Dione system through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical Astronom

    Nonplanar integrability at two loops

    Full text link
    In this article we compute the action of the two loop dilatation operator on restricted Schur polynomials that belong to the su(2) sector, in the displaced corners approximation. In this non-planar large N limit, operators that diagonalize the one loop dilatation operator are not corrected at two loops. The resulting spectrum of anomalous dimensions is related to a set of decoupled harmonic oscillators, indicating integrability in this sector of the theory at two loops. The anomalous dimensions are a non-trivial function of the 't Hooft coupling, with a spectrum that is continuous and starting at zero at large N, but discrete at finite N.Comment: version to appear in JHE

    Quantum Transparency of Anderson Insulator Junctions: Statistics of Transmission Eigenvalues, Shot Noise, and Proximity Conductance

    Full text link
    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a ``bad metal'' in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a non-zero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of non-trivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [Phys. Rev. B {\bf 61}, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band-insulators.Comment: 9 pages, 8 color EPS figures; one additional figure on mesoscopic fluctuations of Fano facto

    Generalized Fokker-Planck Equation For Multichannel Disordered Quantum Conductors

    Full text link
    The Dorokhov-Mello-Pereyra-Kumar (DMPK) equation, which describes the distribution of transmission eigenvalues of multichannel disordered conductors, has been enormously successful in describing a variety of detailed transport properties of mesoscopic wires. However, it is limited to the regime of quasi one dimension only. We derive a one parameter generalization of the DMPK equation, which should broaden the scope of the equation beyond the limit of quasi one dimension.Comment: 8 pages, abstract, introduction and summary rewritten for broader readership. To be published in Phys. Rev. Let

    Conductance length autocorrelation in quasi one-dimensional disordered wires

    Full text link
    Employing techniques recently developed in the context of the Fokker--Planck approach to electron transport in disordered systems we calculate the conductance length correlation function for quasi 1d wires. Our result is valid for arbitrary lengths L and ΔL\Delta L. In the metallic limit the correlation function is given by a squared Lorentzian. In the localized regime it decays exponentially in both L and ΔL\Delta L. The correlation length is proportional to L in the metallic regime and saturates at a value approximately given by the localization length ξ\xi as LξL\gg\xi.Comment: 23 pages, Revtex, two figure

    Statistical Scattering of Waves in Disordered Waveguides: from Microscopic Potentials to Limiting Macroscopic Statistics

    Full text link
    We study the statistical properties of wave scattering in a disordered waveguide. The statistical properties of a "building block" of length (delta)L are derived from a potential model and used to find the evolution with length of the expectation value of physical quantities. In the potential model the scattering units consist of thin potential slices, idealized as delta slices, perpendicular to the longitudinal direction of the waveguide; the variation of the potential in the transverse direction may be arbitrary. The sets of parameters defining a given slice are taken to be statistically independent from those of any other slice and identically distributed. In the dense-weak-scattering limit, in which the potential slices are very weak and their linear density is very large, so that the resulting mean free paths are fixed, the corresponding statistical properties of the full waveguide depend only on the mean free paths and on no other property of the slice distribution. The universality that arises demonstrates the existence of a generalized central-limit theorem. Our final result is a diffusion equation in the space of transfer matrices of our system, which describes the evolution with the length L of the disordered waveguide of the transport properties of interest. In contrast to earlier publications, in the present analysis the energy of the incident particle is fully taken into account.Comment: 75 pages, 10 figures, submitted to Phys. Rev

    Fokker-Planck description of the transfer matrix limiting distribution in the scattering approach to quantum transport

    Full text link
    The scattering approach to quantum transport through a disordered quasi-one-dimensional conductor in the insulating regime is discussed in terms of its transfer matrix \bbox{T}. A model of NN one-dimensional wires which are coupled by random hopping matrix elements is compared with the transfer matrix model of Mello and Tomsovic. We derive and discuss the complete Fokker-Planck equation which describes the evolution of the probability distribution of \bbox{TT}^{\dagger} with system length in the insulating regime. It is demonstrated that the eigenvalues of \ln\bbox{TT}^{\dagger} have a multivariate Gaussian limiting probability distribution. The parameters of the distribution are expressed in terms of averages over the stationary distribution of the eigenvectors of \bbox{TT}^{\dagger}. We compare the general form of the limiting distribution with results of random matrix theory and the Dorokhov-Mello-Pereyra-Kumar equation.Comment: 25 pages, revtex, no figure

    Equivalence of Fokker-Planck approach and non-linear σ\sigma-model for disordered wires in the unitary symmetry class

    Full text link
    The exact solution of the Dorokhov-Mello-Pereyra-Kumar-equation for quasi one-dimensional disordered conductors in the unitary symmetry class is employed to calculate all mm-point correlation functions by a generalization of the method of orthogonal polynomials. We obtain closed expressions for the first two conductance moments which are valid for the whole range of length scales from the metallic regime (LNlL\ll Nl) to the insulating regime (LNlL\gg Nl) and for arbitrary channel number. In the limit NN\to\infty (with L/(Nl)=const.L/(Nl)=const.) our expressions agree exactly with those of the non-linear σ\sigma-model derived from microscopic Hamiltonians.Comment: 9 pages, Revtex, one postscript figur

    Exact Solution for the Distribution of Transmission Eigenvalues in a Disordered Wire and Comparison with Random-Matrix Theory

    Get PDF
    An exact solution is presented of the Fokker-Planck equation which governs the evolution of an ensemble of disordered metal wires of increasing length, in a magnetic field. By a mapping onto a free-fermion problem, the complete probability distribution function of the transmission eigenvalues is obtained. The logarithmic eigenvalue repulsion of random-matrix theory is shown to break down for transmission eigenvalues which are not close to unity. ***Submitted to Physical Review B.****Comment: 20 pages, REVTeX-3.0, INLO-PUB-931028
    corecore