In the past, a maximum-entropy model was introduced and applied to the study
of statistical scattering by chaotic cavities, when short paths may play an
important role in the scattering process. In particular, the validity of the
model was investigated in relation with the statistical properties of the
conductance in open chaotic cavities. In this article we investigate further
the validity of the maximum-entropy model, by comparing the theoretical
predictions with the results of computer simulations, in which the Schroedinger
equation is solved numerically inside the cavity for one and two open channels
in the leads; we analyze, in addition to the conductance, the zero-frequency
limit of the shot-noise power spectrum. We also obtain theoretical results for
the ensemble average of this last quantity, for the orthogonal and unitary
cases of the circular ensemble and an arbitrary number of channels. Generally
speaking, the agreement between theory and numerics is good. In some of the
cavities that we study, short paths consist of whispering gallery modes, which
were excluded in previous studies. These cavities turn out to be all the more
interesting, as it is in relation with them that we found certain systematic
discrepancies in the comparison with theory. We give evidence that it is the
lack of stationarity inside the energy interval that is analyzed, and hence the
lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement
between theory and numerical simulations is improved when the energy interval
is reduced to a point and the statistics is then collected over an ensemble. It
thus appears that the maximum-entropy model is valid beyond the domain where it
was originally derived. An understanding of this situation is still lacking at
the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure