3 research outputs found

    Acute inhibition of bacterial growth in coastal seawater amended with crude oils with varied photoreactivities

    Get PDF
    The increased potential for contamination of seawater by crude oils requires studies of bacterial biodegradation potential, but little is known of the differential negative impacts of oils on bacterial growth. No two wells generate chemically identical oils; and importantly, solar exposure of crude oil may differentially affect the bacterial response. Elucidating the role that sunlight plays on the potential toxicity of spilled crude oils is imperative to understanding how oil spills might affect microbes in the tropical and subtropical waters of Florida. This study examined light exposure of six different crude oils, and subsequent microbial responses to altered oils. Marine bacterioplankton heterotrophic activities were measured via3H-leucine incorporation after the addition of oilsā€™ water accommodated fractions (WAFs) that were created under varied solar conditions. Inhibition of production increased with higher concentrations of WAFs, but dose-response trends varied among the oils. Increased solar exposure during WAF preparation generally led to more inhibition, but trends varied among oils. WAFs were also prepared under different parts of the solar spectrum. Solar-irradiated WAFs resulted in significant but variable acute toxicity vs. dark counterparts. Solar-induced toxicity was primarily a result of visible and not ultraviolet light exposure. Results indicate responses to oil spills are highly dependent on the source of the oil and solar conditions at the time and location of the spill. The data presented here demonstrate the importance of photochemical changes and oil source in modulating microbial activity and bioremediation potential

    PAH Concentrations in Coquina (\u3cem\u3eDonax\u3c/em\u3e spp.) on a Sandy Beach Shoreline Impacted by a Marine Oil Spill

    No full text
    The BP MC252 well failure in the Gulf of Mexico, April 2010 caused concern for crude oil and polycyclic aromatic hydrocarbon (PAHs) exposure along the sandy beaches of the Florida Panhandle. We began collections of Coquina clams (Donax spp.) from the surf zone of Florida Panhandle beaches to monitor PAH contamination to compliment analysis of surf zone sand samples. These clams had higher levels of PAHs relative to ambient sand, and this allowed us to continue to monitor PAH levels after sand concentrations fell below limits of detection. PAH levels in the Coquina tissues were highly variable, perhaps indicative of the heterogeneous distribution of oil and tar on the beaches and exposure to tar particles. Overall, PAH levels decreased continuously in both sand and Coquina tissues, reaching limits of detection within one and two years respectively after oil landed on Florida Panhandle beaches. Our work suggests these surf zone molluscs may be used to monitor pollutant exposure along high energy sandy beach shorelines

    Patterns in phytoplankton and benthic production on the shallow continental shelf in the northeastern Gulf of Mexico

    No full text
    Shallow continental shelves support productive pelagic and benthic communities. This study examined primary productivity at a shallow shelf region in the northeastern Gulf of Mexico focusing on the effect of light on water column and benthic productivity at water depths between 12 and 17 m. Measurements were made between November 2015 and September 2016. Dissolved oxygen fluxes were measured using benthic chambers with four different light levels and used to calculate gross primary production and respiration. Phytoplankton productivity was measured using Ā¹ā“C-uptake incubations in a laboratory photosynthetron. Organic matter production by benthic microalgae is substantial in this region of northeastern Gulf of Mexico with daily production rates ranging from 0.1 to 0.8 g C mā»Ā² dā»Ā¹ in this study. Maximum rates of phytoplankton production up to 2.7 g C mā»Ā² dā»Ā¹ occurred in spring. This peak productivity followed wind conditions favorable to upwelling and occurred when bottom water NOā‚ƒā» concentrations were 11 times greater than on any other sample date during the study. At these shallow depths, benthic microalgae made a significant contribution to total shelf production, averaging about 14% of total production. These results helped characterize benthic and water column production rates prior to planned habitat alterations caused by placement of numerous artificial reef structures in the region.Journal Articl
    corecore