13 research outputs found

    Loss of normal Alzheimer's disease-associated Presenilin 2 function alters antiseizure medicine potency and tolerability in the 6-Hz focal seizure model

    Get PDF
    IntroductionPatients with early-onset Alzheimer's disease (EOAD) experience seizures and subclinical epileptiform activity, which may accelerate cognitive and functional decline. Antiseizure medicines (ASMs) may be a tractable disease-modifying strategy; numerous ASMs are marketed with well-established safety. However, little information is available to guide ASM selection as few studies have rigorously quantified ASM potency and tolerability in traditional seizure models in rodents with EOAD-associated risk factors. Presenilin 2 (PSEN2) variants evoke EOAD, and these patients experience seizures. This study thus established the anticonvulsant profile of mechanistically distinct ASMs in the frontline 6-Hz limbic seizure test evoked in PSEN2-knockout (KO) mice to better inform seizure management in EOAD.MethodsThe median effective dose (ED50) of prototype ASMs was quantified in the 6-Hz test in male and female PSEN2-KO and wild-type (WT) C57BL/6J mice (3–4 months old). Minimal motor impairment (MMI) was assessed to estimate a protective index (PI). Immunohistological detection of cFos established the extent to which 6-Hz stimulation activates discrete brain regions in KO vs. WT mice.ResultsThere were significant genotype-related differences in the potency and tolerability of several ASMs. Valproic acid and levetiracetam were significantly more potent in male KO than in WT mice. Additionally, high doses of valproic acid significantly worsened MMI in KO mice. Conversely, carbamazepine was significantly less potent in female KO vs. WT mice. In both male and female KO mice vs. WTs, perampanel and lamotrigine were equally potent. However, there were marked genotype-related shifts in PI of both carbamazepine and perampanel, with KO mice exhibiting less MMI at the highest doses tested. Gabapentin was ineffective against 6-Hz seizures in KO mice vs. WTs without MMI changes. Neuronal activation 90 min following 6-Hz stimulation was significantly increased in the posterior parietal association cortex overlying CA1 and in the piriform cortex of WT mice, while stimulation-induced increases in cFos immunoreactivity were absent in KO mice.DiscussionAcute ASM potency and tolerability in the high-throughput 6-Hz test may be significantly altered with loss of normal PSEN2 function. Seizures in discrete EOAD populations may benefit from precisely selected medicines optimized for primary ASM pharmacological mechanisms

    A multiorganism pipeline for antiseizure drug discovery:Identification of chlorothymol as a novel Îł-aminobutyric acidergic anticonvulsant

    Get PDF
    OBJECTIVE:Current medicines are ineffective in approximately one-third of people with epilepsy. Therefore, new antiseizure drugs are urgently needed to address this problem of pharmacoresistance. However, traditional rodent seizure and epilepsy models are poorly suited to high-throughput compound screening. Furthermore, testing in a single species increases the chance that therapeutic compounds act on molecular targets that may not be conserved in humans. To address these issues, we developed a pipeline approach using four different organisms. METHODS:We sequentially employed compound library screening in the zebrafish, Danio rerio, chemical genetics in the worm, Caenorhabditis elegans, electrophysiological analysis in mouse and human brain slices, and preclinical validation in mouse seizure models to identify novel antiseizure drugs and their molecular mechanism of action. RESULTS:Initially, a library of 1690 compounds was screened in an acute pentylenetetrazol seizure model using D rerio. From this screen, the compound chlorothymol was identified as an effective anticonvulsant not only in fish, but also in worms. A subsequent genetic screen in C elegans revealed the molecular target of chlorothymol to be LGC-37, a worm Îł-aminobutyric acid type A (GABAA ) receptor subunit. This GABAergic effect was confirmed using in vitro brain slice preparations from both mice and humans, as chlorothymol was shown to enhance tonic and phasic inhibition and this action was reversed by the GABAA receptor antagonist, bicuculline. Finally, chlorothymol exhibited in vivo anticonvulsant efficacy in several mouse seizure assays, including the 6-Hz 44-mA model of pharmacoresistant seizures. SIGNIFICANCE:These findings establish a multiorganism approach that can identify compounds with evolutionarily conserved molecular targets and translational potential, and so may be useful in drug discovery for epilepsy and possibly other conditions

    Reductions in Hydrogen Sulfide and Changes in Mitochondrial Quality Control Proteins Are Evident in the Early Phases of the Corneally Kindled Mouse Model of Epilepsy

    No full text
    Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy

    A companion to the preclinical common data elements for rodent models of pediatric acquired epilepsy: A report of the TASK3‐WG1B, Pediatric and Genetic Models Working Group of the ILAE-AES Joint Translational Task Force

    No full text
    International audienceEpilepsy syndromes during the early years of life may be attributed to an acquired insult, such as hypoxic-ischemic injury, infection, status epilepticus, or brain trauma. These conditions are frequently modeled in experimental rodents to delineate mechanisms of epileptogenesis and investigate novel therapeutic strategies. However, heterogeneity and subsequent lack of reproducibility of such models across laboratories is an ongoing challenge to maintain scientific rigor and knowledge advancement. To address this, as part of the TASK3-WG1B Working Group of the International League Against Epilepsy (ILAE) / American Epilepsy Society (AES) Joint Translational Task Force, we have developed a series of case report forms (CRFs) to describe common data elements (CDEs) for pediatric acquired epilepsy models in rodents. The "Rodent Models of Pediatric Acquired Epilepsy" Core CRF was designed to capture cohort-general information; while two Specific CRFs encompass physical induction models and chemical induction models, respectively. This companion manuscript describes the key elements of these models and why they are important to be considered and reported consistently. Together, these CRFs provide investigators with the tools to systematically record critical information regarding their chosen model of acquired epilepsy during early life, for improved standardization and transparency across laboratories. These outcomes will support the ultimate goal of such research, i.e., to understand the childhood onset-specific biology of epileptogenesis after acquired insults, and translate this knowledge into therapeutics to improve pediatric patient outcomes and minimize the lifetime burden of epilepsy

    A companion to the preclinical common data elements for rodent genetic epilepsy models. A Report of the TASK3-WG1B: Pediatric and Genetic models Working Group of the ILAE/AES Joint Translational Task Force

    No full text
    International audienceRodent models of epilepsy remain the cornerstone of research into the mechanisms underlying genetic epilepsy. Reproducibility of experiments using these rodent models, occurring across a diversity of laboratories and commercial vendors, remains an issue impacting the cost-effectiveness and scientific rigor of the studies performed. Here we present two case report forms (CRFs) describing common data elements (CDE) for genetic rodent models, developed by the TASK3-WG1B Working Group of the International League Against Epilepsy (ILAE) / American Epilepsy Society (AES) Joint Translational Task Force. The first CRF relates to genetic rodent models that have been engineered based on variants described in epilepsy patients. The second CRF encompasses both spontaneous and inbred rodent models. This companion piece describes the elements and discusses the important factors to consider before documenting each required element. These CRFs provide tools that allow investigators to more uniformly describe core experimental data on different genetic models across laboratories, with the aim of improving experimental reproducibility and thus translational impact of such studies
    corecore