213 research outputs found

    Dose-response effect of Gelofusine on renal uptake and retention of radiolabelled octreotate in rats with CA20948 tumours

    Get PDF
    Purpose: Peptide receptor radionuclide therapy using β-emitting radiolabelled somatostatin analogues like DOTA,Tyr3-octreotate shows beneficial results in patients suffering from somatostatin receptor overexpressing tumours. However, after high-dose therapy partial renal reabsorption of radiopeptides may lead to nephrotoxicity. Co-infusion of lysine/arginine lowers renal retention of these radiopeptides without affecting tumour uptake. Recently co-administration of Gelofusine has been described to have a comparable kidney-protecting effect in rats. In the present study optimal dosing of Gelofusine co-administration was studied in tumour-bearing rats. Methods: Doses of 40, 80, 120 or 160 mg/kg Gelofusine were co-injected with 15 μg DOTA,Tyr3-octreotate, labelled with 3 MBq111In for biodistribution (24 h post-injection, n=4 per group) and with 60 MBq111In for microSPECT imaging experiments at 3, 24 and 48 h post-injection. An additional group of rats received 80 mg/kg Gelofusine plus 400 mg/kg lysine co-injection. Biodistribution studies were performed both in older (475 g) and younger (300 g) rats, the latter bearing CA20948 tumours. Results: Co-injection of 40 mg/kg Gelofusine resulted in 40-50% reduction of renal uptake and retention of111In-DOTA,Tyr3-octreotate, whereas higher doses further increased the reduction to 50-60% in both groups of rats. Combining Gelofusine and lysine caused 70% reduction of renal uptake. The uptake of radiolabelled octreotate both in somatostatin receptor-expressing normal tissues and tumours was not affected by Gelofusine co-injection. Conclusion: In rats co-injection of 80 mg/kg Gelofusine resulted in maximum reduction of renal retention of111In-DOTA,Tyr3- octreotate, which was further improved when combined with lysine. Tumour uptake of radiolabelled octreotate was not affected, resulting in an increased tumour to kidney ratio

    Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

    Get PDF
    Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos – a marker of cellular activation – in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly

    Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion

    Get PDF
    Background: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Methods: Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. Results: The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. Conclusions: The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge

    HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.

    Get PDF
    Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth

    Probiotics versus antibiotic decontamination of the digestive tract: infection and mortality

    Get PDF
    Purpose: Selective decontamination of the digestive tract (SDD) has been shown to decrease the infection rate and mortality in intensive care units (ICUs); Lactobacillus plantarum 299/299v plus fibre (LAB) has been used for infection prevention and does not harbour the potential disadvantages of antibiotics. The objective was to assess whether LAB is not inferior to SDD in infection prevention. Methods: Two hundred fifty-four consecutive ICU patients with expected mechanical ventilation ≥48 h and/or expected ICU stay ≥72 h were assigned to receive SDD: four times daily an oral paste (polymyxin E

    Frailty Intervention Trial (FIT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frailty is a term commonly used to describe the condition of an older person who has chronic health problems, has lost functional abilities and is likely to deteriorate further. However, despite its common use, only a small number of studies have attempted to define the syndrome of frailty and measure its prevalence. The criteria Fried and colleagues used to define the frailty syndrome will be used in this study (i.e. weight loss, fatigue, decreased grip strength, slow gait speed, and low physical activity). Previous studies have shown that clinical outcomes for frail older people can be improved using multi-factorial interventions such as comprehensive geriatric assessment, and single interventions such as exercise programs or nutritional supplementation, but no interventions have been developed to specifically reverse the syndrome of frailty.</p> <p>We have developed a multidisciplinary intervention that specifically targets frailty as defined by Fried et al. We aim to establish the effects of this intervention on frailty, mobility, hospitalisation and institutionalisation in frail older people.</p> <p>Methods and Design</p> <p>A single centre randomised controlled trial comparing a multidisciplinary intervention with usual care. The intervention will target identified characteristics of frailty, functional limitations, nutritional status, falls risk, psychological issues and management of chronic health conditions. Two hundred and thirty people aged 70 and over who meet the Fried definition of frailty will be recruited from clients of the aged care service of a metropolitan hospital. Participants will be followed for a 12-month period.</p> <p>Discussion</p> <p>This research is an important step in the examination of specifically targeted frailty interventions. This project will assess whether an intervention specifically targeting frailty can be implemented, and whether it is effective when compared to usual care. If successful, the study will establish a new approach to the treatment of older people at risk of further functional decline and institutionalisation. The strategies to be examined are readily transferable to routine clinical practice and are applicable broadly in the setting of aged care health services.</p> <p>Trial Registration</p> <p>Australian New Zealand Clinical Trails Registry: ACTRN12608000250336.</p

    Genetic loci linked to Type 1 Diabetes and Multiple Sclerosis families in Sardinia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Mediterranean island of Sardinia has a strikingly high incidence of the autoimmune disorders Type 1 Diabetes (T1D) and Multiple Sclerosis (MS). Furthermore, the two diseases tend to be co-inherited in the same individuals and in the same families. These observations suggest that some unknown autoimmunity variant with relevant effect size could be fairly common in this founder population and could be detected using linkage analysis.</p> <p>Methods</p> <p>To search for T1D and MS loci as well as any that predispose to both diseases, we performed a whole genome linkage scan, sequentially genotyping 593 microsatellite marker loci in 954 individuals distributed in 175 Sardinian families. In total, 413 patients were studied; 285 with T1D, 116 with MS and 12 with both disorders. Model-free linkage analysis was performed on the genotyped samples using the Kong and Cox logarithm of odds (LOD) score statistic.</p> <p>Results</p> <p>In T1D, aside from the HLA locus, we found four regions showing a lod-score ≥1; 1p31.1, 6q26, 10q21.2 and 22q11.22. In MS we found three regions showing a lod-score ≥1; 1q42.2, 18p11.21 and 20p12.3. In the combined T1D-MS scan for shared autoimmunity loci, four regions showed a LOD >1, including 6q26, 10q21.2, 20p12.3 and 22q11.22. When we typed more markers in these intervals we obtained suggestive evidence of linkage in the T1D scan at 10q21.2 (LOD = 2.1), in the MS scan at 1q42.2 (LOD = 2.5) and at 18p11.22 (LOD = 2.6). When all T1D and MS families were analysed jointly we obtained suggestive evidence in two regions: at 10q21.1 (LOD score = 2.3) and at 20p12.3 (LOD score = 2.5).</p> <p>Conclusion</p> <p>This suggestive evidence of linkage with T1D, MS and both diseases indicates critical chromosome intervals to be followed up in downstream association studies.</p
    corecore