107 research outputs found

    Surgical management of giant pituitary neuroendocrine tumors: Meta-analysis and consensus statement on behalf of the EANS skull base section.

    Get PDF
    The optimal surgical treatment for giant pituitary neuroendocrine tumors(GPitNETs) is debated. The aim of this paper is to optimize the surgical management of these patients and to provide a consensus statement on behalf of the EANS Skull Base Section. We constituted a task force belonging to the EANS skull base committee to define some principles for the management of GPitNETs. A systematic review was performed according to PRISMA guidelines to perform a meta-analysis on surgical series of GPitNETs. Weighted summary rates were obtained for the pooled extent of resection and according to the surgical technique. These data were discussed to obtain recommendations after evaluation of the selected articles and discussion among the experts. 20articles were included in our meta-analysis, for a total of 1263 patients. The endoscopic endonasal technique was used in 40.3% of cases, the microscopic endonasal approach in 34% of cases, transcranial approaches in 18.7% and combined approaches in 7% of cases. No difference in terms of gross total resection (GTR) rate was observed among the different techniques. Pooled GTR rate was 36.6%, while a near total resection (NTR) was possible in 45.2% of cases. Cavernous sinus invasion was associated with a lower GTR rate (OR: 0.061). After surgery, 35% of patients had endocrinological improvement and 75.6% had visual improvement. Recurrent tumors were reported in 10% of cases. After formal discussion in the working group, we recommend the treatment of G-PitNETs tumors with a more complex and multilobular structure in tertiary care centers. The endoscopic endonasal approach is the first option of treatment and extended approaches should be planned according to extension, morphology and consistency of the lesion. Transcranial approaches play a role in selected cases, with a multicompartmental morphology, subarachnoid invasion and extension lateral to the internal carotid artery and in the management of residual tumor apoplexy

    The spectrum of Apert syndrome: phenotype, particularities in orthodontic treatment, and characteristics of orthognathic surgery

    Get PDF
    In the PubMed accessible literature, information on the characteristics of interdisciplinary orthodontic and surgical treatment of patients with Apert syndrome is rare. The aim of the present article is threefold: (1) to show the spectrum of the phenotype, in order (2) to elucidate the scope of hindrances to orthodontic treatment, and (3) to demonstrate the problems of surgery and interdisciplinary approach. Children and adolescents who were born in 1985 or later, who were diagnosed with Apert syndrome, and who sought consultation or treatment at the Departments of Orthodontics or Craniomaxillofacial Surgery at the Dental School of the University Hospital of Münster (n = 22; 9 male, 13 female) were screened. Exemplarily, three of these patients (2 male, 1 female), seeking interdisciplinary (both orthodontic and surgical treatment) are presented. Orthodontic treatment before surgery was performed by one experienced orthodontist (AH), and orthognathic surgery was performed by one experienced surgeon (UJ), who diagnosed the syndrome according to the criteria listed in OMIM™. In the sagittal plane, the patients suffered from a mild to a very severe Angle Class III malocclusion, which was sometimes compensated by the inclination of the lower incisors; in the vertical dimension from an open bite; and transversally from a single tooth in crossbite to a circular crossbite. All patients showed dentitio tarda, some impaction, partial eruption, idopathic root resorption, transposition or other aberrations in the position of the tooth germs, and severe crowding, with sometimes parallel molar tooth buds in each quarter of the upper jaw. Because of the severity of malocclusion, orthodontic treatment needed to be performed with fixed appliances, and mainly with superelastic wires. The therapy was hampered with respect to positioning of bands and brackets because of incomplete tooth eruption, dense gingiva, and mucopolysaccharide ridges. Some teeth did not move, or moved insufficiently (especially with respect to rotations and torque) irrespective of surgical procedures or orthodontic mechanics and materials applied, and without prognostic factors indicating these problems. Establishing occlusal contact of all teeth was difficult. Tooth movement was generally retarded, increasing the duration of orthodontic treatment. Planning of extractions was different from that of patients without this syndrome. In one patient, the sole surgical procedure after orthodontic treatment with fixed appliances in the maxilla and mandible was a genioplasty. Most patients needed two- jaw surgery (bilateral sagittal split osteotomy [BSSO] with mandibular setback and distraction in the maxilla). During the period of distraction, the orthodontist guided the maxilla into final position by means of bite planes and intermaxillary elastics. To our knowledge, this is the first article in the PubMed accessible literature describing the problems with respect to interdisciplinary orthodontic and surgical procedures. Although the treatment results are not perfect, patients undergoing these procedures benefit esthetically to a high degree. Patients need to be informed with respect to the different kinds of extractions that need to be performed, the increased treatment time, and the results, which may be reached using realistic expectations

    Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium <it>Dichelobacter nodosus</it>. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but <it>D. nodosu</it>s should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of <it>D. nodosus </it>and to compare its performance with culturing and conventional PCR.</p> <p>Methods</p> <p>A <it>D. nodosus-</it>specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly.</p> <p>Results</p> <p>The developed assay had a detection limit of 3.9 fg of <it>D. nodosus </it>genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the <it>D. nodosus </it>genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR.</p> <p>Conclusions</p> <p>The developed real-time PCR assay has good specificity and sensitivity for detection of <it>D. nodosus</it>, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR.</p

    Scalability approaches for causal multicast: a survey

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00607-015-0479-0Many distributed services need to be scalable: internet search, electronic commerce, e-government... In order to achieve scalability, high availability and fault tolerance, such applications rely on replicated components. Because of the dynamics of growth and volatility of customer markets, applications need to be hosted by adaptive, highly scalable systems. In particular, the scalability of the reliable multicast mechanisms used for supporting the consistency of replicas is of crucial importance. Reliable multicast might propagate updates in a pre-determined order (e.g., FIFO, total or causal). Since total order needs more communication rounds than causal order, the latter appears to be the preferable candidate for achieving multicast scalability, although the consistency guarantees based on causal order are weaker than those of total order. This paper provides a historical survey of different scalability approaches for reliable causal multicast protocols.This work was supported by European Regional Development Fund (FEDER) and Ministerio de Economia y Competitividad (MINECO) under research Grant TIN2012-37719-C03-01.Juan Marín, RD.; Decker, H.; Armendáriz Íñigo, JE.; Bernabeu Aubán, JM.; Muñoz Escoí, FD. (2016). Scalability approaches for causal multicast: a survey. Computing. 98(9):923-947. https://doi.org/10.1007/s00607-015-0479-0S923947989Adly N, Nagi M (1995) Maintaining causal order in large scale distributed systems using a logical hierarchy. In: IASTED Intnl Conf on Appl Inform, pp 214–219Aguilera MK, Chen W, Toueg S (1997) Heartbeat: a timeout-free failure detector for quiescent reliable communication. In: 11th Intnl Wshop on Distrib Alg (WDAG), Saarbrücken, pp 126–140Almeida JB, Almeida PS, Baquero C (2004) Bounded version vectors. In: 18th Intnl Conf Distrib Comput (DISC), Amsterdam, pp 102–116Almeida PS, Baquero C, Fonte V (2008) Interval tree clocks. In: 12th Intnl Conf Distrib Syst (OPODIS), Luxor, pp 259–274Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on chain replication. In: 8th EuroSys Conf, Czech Republic, pp 85–98Álvarez A, Arévalo S, Cholvi V, Fernández A, Jiménez E (2008) On the interconnection of message passing systems. Inf Process Lett 105(6):249–254Amir Y, Stanton J (1998) The Spread wide area group communication system. Tech. rep., CDNS-98-4, The Center for Networking and Distributed Systems, The Johns Hopkins UnivAmir Y, Dolev D, Kramer S, Malki D (1992) Transis: a communication subsystem for high availability. In: 22nd Intnl Symp Fault-Tolerant Comp (FTCS), Boston, pp 76–84Anastasi G, Bartoli A, Spadoni F (2001) A reliable multicast protocol for distributed mobile systems: design and evaluation. IEEE Trans Parallel Distrib Syst 12(10):1009–1022Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt Data (SIGMOD), New York, pp 761–772Baldoni R, Raynal M, Prakash R, Singhal M (1996) Broadcast with time and causality constraints for multimedia applications. In: 22nd Intnl Euromicro Conf, Prague, pp 617–624Baldoni R, Friedman R, van Renesse R (1997) The hierarchical daisy architecture for causal delivery. In: 17th Intnl Conf Distrib Comput Syst (ICDCS), Maryland, pp 570–577Ban B (2002) JGroups—a toolkit for reliable multicast communication. http://www.jgroups.orgBaquero C, Almeida PS, Shoker A (2014) Making operation-based CRDTs operation-based. In: 14th Intnl Conf Distrib Appl Interop Syst (DAIS), Berlin, pp 126–140Benslimane A, Abouaissa A (2002) Dynamical grouping model for distributed real time causal ordering. Comput Commun 25:288–302Birman KP, Joseph TA (1987) Reliable communication in the presence of failures. ACM Trans Comput Syst 5(1):47–76Birman KP, Schiper A, Stephenson P (1991) Lightweigt causal and atomic group multicast. ACM Trans Comput Syst 9(3):272–314Cachin C, Guerraoui R, Rodrigues LET (2011) Introduction to reliable and secure distributed programming, 2nd edn. Springer, BerlinChandra P, Gambhire P, Kshemkalyani AD (2004) Performance of the optimal causal multicast algorithm: a statistical analysis. IEEE Trans Parall Distr 15(1):40–52Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM 43(2):225–267de Juan-Marín R, Cholvi V, Jiménez E, Muñoz-Escoí FD (2009) Parallel interconnection of broadcast systems with multiple FIFO channels. In: 11th Intnl Symp on Distrib Obj, Middleware and Appl (DOA), Vilamoura, LNCS, vol 5870, pp 449–466Défago X, Schiper A, Urbán P (2004) Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput Surv 36(4):372–421Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symp on Princ of Distrib Comput (PODC), Canada, pp 1–12Du J, Elnikety S, Roy A, Zwaenepoel W (2013) Orbe: scalable causal consistency using dependency matrices and physical clocks. In: ACM Symp on Cloud Comput (SoCC), Santa Clara, pp 11:1–11:14Fernández A, Jiménez E, Cholvi V (2000) On the interconnection of causal memory systems. In: 19th Annual ACM Symp on Princ of Distrib Comput (PODC), Portland, pp 163–170Fidge CJ (1988) Timestamps in message-passing systems that preserve the partial ordering. In: 11th Australian Comput Conf, pp 56–66Friedman R, Vitenberg R, Chockler G (2003) On the composability of consistency conditions. Inf Process Lett 86(4):169–176Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2):51–59Gray J, Helland P, O’Neil PE, Shasha D (1996) The dangers of replication and a solution. In: SIGMOD Conf, pp 173–182Hadzilacos V, Toueg S (1993) Fault-tolerant broadcasts and related problems. In: Mullender S (ed) Distributed systems, chap 5, 2nd edn. ACM Press, pp 97–145Johnson S, Jahanian F, Shah J (1999) The inter-group router approach to scalable group composition. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin, pp 4–14Kalantar MH, Birman KP (1999) Causally ordered multicast: the conservative approach. In: 19th Intnl Conf on Distrib Comput Syst (ICDCS), Austin, pp 36–44Kawanami S, Enokido T, Takizawa M (2004) A group communication protocol for scalable causal ordering. In: 18th Intnl Conf on Adv Inform Netw Appl (AINA), Fukuoka, pp 296–302Kawanami S, Nishimura T, Enokido T, Takizawa M (2005) A scalable group communication protocol with global clock. In: 19th Intnl Conf on Adv Inform Netw Appl (AINA), Taipei, pp 625–630Kshemkalyani AD, Singhal M (1998) Necessary and sufficient conditions on information for causal message ordering and their optimal implementation. Distrib Comput 11(2):91–111Kshemkalyani AD, Singhal M (2011) Distributed computing: principles, algorithms, and systems, 2nd edn. Cambridge University Press, New YorkLadin R, Liskov B, Shrira L, Ghemawat S (1992) Providing high availability using lazy replication. ACM Trans Comput Syst 10(4):360–391Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565Laumay P, Bruneton E, de Palma N, Krakowiak S (2001) Preserving causality in a scalable message-oriented middleware. In: Intnl Conf on Distrib Syst Platf (Middleware), pp 311–328Liu N, Liu M, Cao J, Chen G, Lou W (2010) When transportation meets communication: V2P over VANETs. In: 30th Intnl Conf Distrib Comput Syst (ICDCS), GenovaLwin CH, Mohanty H, Ghosh RK (2004) Causal ordering in event notification service systems for mobile users. In: Intnl Conf Inform Tech: Coding Comput (ITCC), Las Vegas, pp 735–740Mahajan P, Alvisi L, Dahlin M (2011) Consistency, availability and covergence. Tech. rep., UTCS TR-11-22, The University of Texas at AustinMatos M, Sousa A, Pereira J, Oliveira R, Deliot E, Murray P (2009) CLON: overlay networks and gossip protocols for cloud environments. In: 11th Intnl Symp on Dist Obj, Middleware and Appl (DOA), Vilamoura, LNCS, vol 5870, pp 549–566Mattern F (1989) Virtual time and global states of distributed systems. In: Parallel and distributed algorithms, North-Holland, pp 215–226Mattern F, Fünfrocken S (1994) A non-blocking lightweight implementation of causal order message delivery. Lect Notes Comput Sci 938:197–213Meldal S, Sankar S, Vera J (1991) Exploiting locality in maintaining potential causality. In: 10th ACM Symp on Princ of Distrib Comp (PODC), Montreal, pp 231–239Meling H, Montresor A, Helvik BE, Babaoglu Ö (2008) Jgroup/ARM: a distributed object group platform with autonomous replication management. Softw Pract Exp 38(9):885–923Mosberger D (1993) Memory consistency models. Oper Syst Rev 27(1):18–26Mostéfaoui A, Raynal M (1993) Causal multicast in overlapping groups: towards a low cost approach. In: 4th Intnl Wshop on Future Trends of Distrib Comp Syst (FTDCS), Lisbon, pp 136–142Mostéfaoui A, Raynal M, Travers C, Patterson S, Agrawal D, El Abbadi A (2005) From static distributed systems to dynamic systems. In: 24th Symp on Rel Distrib Syst (SRDS), Orlando, pp 109–118Nishimura T, Hayashibara N, Takizawa M, Enokido T (2005) Causally ordered delivery with global clock in hierarchical group. In: ICPADS (2), Fukuoka, pp 560–564Parker DS Jr, Popek GJ, Rudisin G, Stoughton A, Walker BJ, Walton E, Chow JM, Edwards DA, Kiser S, Kline CS (1983) Detection of mutual inconsistency in distributed systems. IEEE Trans Softw Eng 9(3):240–247Pascual-Miret L (2014) Consistency models in modern distributed systems. An approach to eventual consistency. Master’s thesis, Depto. de Sistemas Informáticos y Computación, Univ. Politècnica de ValènciaPascual-Miret L, González de Mendívil JR, Bernabéu-Aubán JM, Muñoz-Escoí FD (2015) Widening CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politècnica de València, ValenciaPeterson LL, Buchholz NC, Schlichting RD (1989) Preserving and using context information in interprocess communication. ACM Trans Comput Syst 7(3):217–246Pomares Hernández S, Fanchon J, Drira K, Diaz M (2001) Causal broadcast protocol for very large group communication systems. In: 5th Intnl Conf on Princ of Distrib Syst (OPODIS), Manzanillo, pp 175–188Prakash R, Baldoni R (2004) Causality and the spatial-temporal ordering in mobile systems. Mobile Netw Appl 9(5):507–516Prakash R, Raynal M, Singhal M (1997) An adaptive causal ordering algorithm suited to mobile computing environments. J Parallel Distrib Comput 41(2):190–204Raynal M, Schiper A, Toueg S (1991) The causal ordering abstraction and a simple way to implement it. Inf Process Lett 39(6):343–350Rodrigues L, Veríssimo P (1995a) Causal separators and topological timestamping: An approach to support causal multicast in large-scale systems. Tech. Rep. AR-05/95, Instituto de Engenharia de Sistemas e Computadores (INESC), LisbonRodrigues L, Veríssimo P (1995b) Causal separators for large-scale multicast communication. In: 15th Intnl Conf on Distrib Comput Syst (ICDCS), Vancouver, pp 83–91Schiper A, Eggli J, Sandoz A (1989) A new algorithm to implement causal ordering. In: 3rd Intnl Wshop on Distrib Alg (WDAG), Nice, pp 219–232Schiper N, Pedone F (2010) Fast, flexible and highly resilient genuine FIFO and causal multicast algorithms. In: 25th ACM Symp on Applied Comp (SAC), Sierre, pp 418–422Shapiro M, Preguiça NM, Baquero C, Zawirski M (2011) Convergent and commutative replicated data types. Bull EATCS 104:67–88Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage under partial replication. In: Intnl Paral Distrib Proces Symp (IPDPS) Wshop, Hyderabad, pp 509–518Singhal M, Kshemkalyani AD (1992) An efficient implementation of vector clocks. Inf Process Lett 43(1):47–52Sotomayor B, Montero RS, Llorente IM, Foster IT (2009) Virtual infrastructure management in private and hybrid clouds. IEEE Internet Comput 13(5):14–22Stephenson P (1991) Fast ordered multicasts. PhD thesis, Dept. of Comp. Sc., Cornell Univ., IthacaStonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44Wischhof L, Ebner A, Rohling H (2005) Information dissemination in self-organizing intervehicle networks. IEEE Trans Intell Transp 6(1):90–101Yavatkar R (1992) MCP: a protocol for coordination and temporal synchronization in multimedia collaborative applications. In: 12th Intnl Conf on Distrib Comput Syst (ICDCS), Yokohama, pp 606–613Yen LH, Huang TL, Hwang SY (1997) A protocol for causally ordered message delivery in mobile computing systems. Mobile Netw Appl 2(4):365–372Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in the past: causal consistency for client-side applications. In: 16th Intnl Middleware Conf, VancouverZhou S, Cai W, Turner SJ, Lee BS, Wei J (2007) Critical causal order of events in distributed virtual environments. ACM Trans Mult Comp Commun Appl 3(3):1
    corecore