1,591 research outputs found

    Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor

    Full text link
    Surface characterizations of an organophosphorus (OP) gas detector based on chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteristics of the devices. KPFM measurements on FETs allow (i) to investigate the contact potential difference (CPD) distribution of the polarized device as function of the gate voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quantitative surface potential. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quantitatively consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor grafting, corresponding to a decrease of the work function, and a weaker variation after exposure to OP (between - 14 mV and - 61 mV) was measured. Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The OP molecules were essentially localized on the Si-NR confirming effectiveness and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201

    Ambipolar charge injection and transport in a single pentacene monolayer island

    Full text link
    Electrons and holes are locally injected in a single pentacene monolayer island. The two-dimensional distribution and concentration of the injected carriers are measured by electrical force microscopy. In crystalline monolayer islands, both carriers are delocalized over the whole island. On disordered monolayer, carriers stay localized at their injection point. These results provide insight into the electronic properties, at the nanometer scale, of organic monolayers governing performances of organic transistors and molecular devices.Comment: To be published in Nano Letter

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    Superconducting spin filter

    Full text link
    Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and the superconductor are grounded. In general, a finite current I2(V1,0)I_2(V_1,0) is induced in the grounded lead 2; its magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission from the lead 1 to the lead 2. It is known that in the tunneling limit, when normal leads are weakly coupled to the superconductor, I2(V1,0)=0I_2(V_1,0)=0, if V1<Δ|V_1|<\Delta and the system is in the clean limit. In other words, Andreev and normal tunneling processes compensate each-other. We consider the general case: the voltages are below the gap, the system is either dirty or clean. It is shown that I2(V1,0)=0I_2(V_1,0)=0 for general configuration of the normal leads; if the first lead injects spin polarized current then I2=0I_2=0, but spin current in the lead-2 is finite. XISIN structure, where X is a source of the spin polarized current could be applied as a filter separating spin current from charge current. We do an analytical progress calculating I1(V1,V2),I2(V1,V2)I_1(V_1,V_2), I_2(V_1,V_2).Comment: 5 pages, references adde

    Colour and Odour Drive Fruit Selection and Seed Dispersal by Mouse Lemurs

    Get PDF
    Animals and fruiting plants are involved in a complex set of interactions, with animals relying on fruiting trees as food resources, and fruiting trees relying on animals for seed dispersal. This interdependence shapes fruit signals such as colour and odour, to increase fruit detectability, and animal sensory systems, such as colour vision and olfaction to facilitate food identification and selection. Despite the ecological and evolutionary importance of plant-animal interactions for shaping animal sensory adaptations and plant characteristics, the details of the relationship are poorly understood. Here we examine the role of fruit chromaticity, luminance and odour on seed dispersal by mouse lemurs. We show that both fruit colour and odour significantly predict fruit consumption and seed dispersal by Microcebus ravelobensis and M. murinus. Our study is the first to quantify and examine the role of bimodal fruit signals on seed dispersal in light of the sensory abilities of the disperser

    Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Get PDF
    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C
    corecore