118 research outputs found

    Use of passive diffusion sampling method for defining NO(2 )concentrations gradient in São Paulo, Brazil

    Get PDF
    BACKGROUND: Air pollution in São Paulo is constantly being measured by the State of Sao Paulo Environmental Agency, however there is no information on the variation between places with different traffic densities. This study was intended to identify a gradient of exposure to traffic-related air pollution within different areas in São Paulo to provide information for future epidemiological studies. METHODS: We measured NO(2 )using Palmes' diffusion tubes in 36 sites on streets chosen to be representative of different road types and traffic densities in São Paulo in two one-week periods (July and August 2000). In each study period, two tubes were installed in each site, and two additional tubes were installed in 10 control sites. RESULTS: Average NO(2 )concentrations were related to traffic density, observed on the spot, to number of vehicles counted, and to traffic density strata defined by the city Traffic Engineering Company (CET). Average NO(2)concentrations were 63μg/m(3 )and 49μg/m(3 )in the first and second periods, respectively. Dividing the sites by the observed traffic density, we found: heavy traffic (n = 17): 64μg/m(3 )(95% CI: 59μg/m(3 )– 68μg/m(3)); local traffic (n = 16): 48μg/m(3 )(95% CI: 44μg/m(3 )– 52μg/m(3)) (p < 0.001). CONCLUSION: The differences in NO(2 )levels between heavy and local traffic sites are large enough to suggest the use of a more refined classification of exposure in epidemiological studies in the city. Number of vehicles counted, traffic density observed on the spot and traffic density strata defined by the CET might be used as a proxy for traffic exposure in São Paulo when more accurate measurements are not available

    Harbor and intra-city drivers of air pollution: findings from a land use regression model, Durban, South Africa

    Get PDF
    Multiple land use regression models (LUR) were developed for different air pollutants to characterize exposure, in the Durban metropolitan area, South Africa. Based on the European Study of Cohorts for Air Pollution Effects (ESCAPE) methodology, concentrations of particulate matter (PM; 10; and PM; 2.5; ), sulphur dioxide (SO; 2; ), and nitrogen dioxide (NO; 2; ) were measured over a 1-year period, at 41 sites, with Ogawa Badges and 21 sites with PM Monitors. Sampling was undertaken in two regions of the city of Durban, South Africa, one with high levels of heavy industry as well as a harbor, and the other small-scale business activity. Air pollution concentrations showed a clear seasonal trend with higher concentrations being measured during winter (25.8, 4.2, 50.4, and 20.9 µg/m; 3; for NO; 2; , SO; 2; , PM; 10; , and PM; 2.5; , respectively) as compared to summer (10.5, 2.8, 20.5, and 8.5 µg/m; 3; for NO; 2; , SO; 2; , PM; 10; , and PM; 2.5; , respectively). Furthermore, higher levels of NO; 2; and SO; 2; were measured in south Durban as compared to north Durban as these are industrial related pollutants, while higher levels of PM were measured in north Durban as compared to south Durban and can be attributed to either traffic or domestic fuel burning. The LUR NO; 2; models for annual, summer, and winter explained 56%, 41%, and 63% of the variance with elevation, traffic, population, and Harbor being identified as important predictors. The SO; 2; models were less robust with lower R; 2; annual (37%), summer (46%), and winter (46%) with industrial and traffic variables being important predictors. The R; 2; for PM; 10; models ranged from 52% to 80% while for PM; 2.5; models this range was 61-76% with traffic, elevation, population, and urban land use type emerging as predictor variables. While these results demonstrate the influence of industrial and traffic emissions on air pollution concentrations, our study highlighted the importance of a Harbor variable, which may serve as a proxy for NO; 2; concentrations suggesting the presence of not only ship emissions, but also other sources such as heavy duty motor vehicles associated with the port activities

    Совместная обработка траекторно измерительной информации при испытаниях сложных информационно-управляющих систем

    Get PDF
    Рассмотрен метод траекторных измерений, использующий совместную обработку измерительной информации, полученной от полигонных средств внешнетраекторных измерений и специальной бортовой измерительной аппаратуры при натурных испытаниях сложных информационно-управляющих систем на местах их постоянной дислокации.A method of trajectory measurements, which uses a joint processing of the measuring data, obtained from the proving ground means of external trajectory measurements and special onboard measuring equipment with the full-scale tests of the complex information-control systems at their constant disposition is considered

    Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Get PDF
    Background: Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types.Objectives: The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type.Methods: We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matte

    Hyperlocal variation of nitrogen dioxide, black carbon, and ultrafine particles measured with Google Street View cars in Amsterdam and Copenhagen

    Get PDF
    Hyperlocal air quality maps are becoming increasingly common, as they provide useful insights into the spatial variation and sources of air pollutants. In this study, we produced several high-resolution concentration maps to assess the spatial differences of three traffic-related pollutants, Nitrogen dioxide (NO 2), Black Carbon (BC) and Ultrafine Particles (UFP), in Amsterdam, the Netherlands, and Copenhagen, Denmark. All maps were based on a mixed-effect model approach by using state-of-the-art mobile measurements conducted by Google Street View (GSV) cars, during October 2018 - March 2020, and Land-use Regression (LUR) models based on several land-use and traffic predictor variables. We then explored the concentration ratio between the different normalised pollutants to understand possible contributing sources to the observed hyperlocal variations. The maps developed in this work reflect, (i) expected elevated pollution concentrations along busy roads, and (ii) similar concentration patterns on specific road types, e.g., motorways, for both cities. In the ratio maps, we observed a clear pattern of elevated concentrations of UFP near the airport in both cities, compared to BC and NO 2. This is the first study to produce hyperlocal maps for BC and UFP using high-quality mobile measurements. These maps are important for policymakers and health-effect studies, trying to disentangle individual effects of key air pollutants of interest (e.g., UFP)

    The effect of exposure to traffic related air pollutants in pregnancy on birth anthropometry: a cohort study in a heavily polluted low-middle income country

    Get PDF
    BACKGROUND: Ambient air pollution has been recognized as one of the most important environmental health threats. Exposure in early life may affect pregnancy outcomes and the health of the offspring. The main objective of our study was to assess the association between prenatal exposure to traffic related air pollutants during pregnancy on birth weight and length. Second, to evaluate the association between prenatal exposure to traffic related air pollutants and the risk of low birth weight (LBW). METHODS: Three hundred forty mother-infant pairs were included in this prospective cohort study performed in Jakarta, March 2016-September 2020. Exposure to outdoor PM2.5, soot, NOx, and NO2 was assessed by land use regression (LUR) models at individual level. Multiple linear regression models were built to evaluate the association between air pollutants with birth weight (BW) and birth length (BL). Logistic regression was used to assess the risk of low birth weight (LBW) associated with all air pollutants. RESULTS: The average PM2.5 concentration was almost eight times higher than the current WHO guideline and the NO2 level was three times higher. Soot and NOx were significantly associated with reduced birth length. Birth length was reduced by - 3.83 mm (95% CI -6.91; - 0.75) for every IQR (0.74 × 10- 5 per m) increase of soot, and reduced by - 2.82 mm (95% CI -5.33;-0.30) for every IQR (4.68 μg/m3) increase of NOx. Outdoor air pollutants were not significantly associated with reduced birth weight nor the risk of LBW. CONCLUSION: Exposure to soot and NOx during pregnancy was associated with reduced birth length. Associations between exposure to all air pollutants with birth weight and the risk of LBW were less convincing

    Perinatal exposure to traffic related air pollutants and the risk of infection in the first six months of life: a cohort study from a low-middle income country

    Get PDF
    Objective: There is limited study from low-and-middle income countries on the effect of perinatal exposure to air pollution and the risk of infection in infant. We assessed the association between perinatal exposure to traffic related air pollution and the risk of infection in infant during their first six months of life. Methods: A prospective cohort study was performed in Jakarta, March 2016–September 2020 among 298 mother-infant pairs. PM2.5, soot, NOx, and NO2 concentrations were assessed using land use regression models (LUR) at individual level. Repeated interviewer-administered questionnaires were used to obtain data on infection at 1, 2, 4 and 6 months of age. The infections were categorized as upper respiratory tract (runny nose, cough, wheezing or shortness of breath), lower respiratory tract (pneumonia, bronchiolitis) or gastrointestinal tract infection. Logistic regression models adjusted for covariates were used to assess the association between perinatal exposure to air pollution and the risk of infection in the first six months of life. Results: The average concentrations of PM2.5 and NO2 were much higher than the WHO recommended levels. Upper respiratory tract infections (URTI) were much more common in the first six months of life than diagnosed lower respiratory tract or gastro-intestinal infections (35.6%, 3.5% and 5.8% respectively). Perinatal exposure to PM2.5 and soot suggested increase cumulative risk of upper respiratory tract infection (URTI) in the first 6 months of life per IQR increase with adjusted OR of 1.50 (95% CI 0.91; 2.47) and 1.14 (95% CI 0.79; 1.64), respectively. Soot was significantly associated with the risk of URTI at 4–6 months age interval (aOR of 1.45, 95%CI 1.02; 2.09). All air pollutants were also positively associated with lower respiratory tract infection, but all CIs include unity because of relatively small samples. Adjusted odds ratios for gastrointestinal infections were close to unity. Conclusion: Our study adds to the evidence that perinatal exposure to fine particles is associated with respiratory tract infection in infants in a low-middle income country

    Perinatal exposure to traffic related air pollutants and the risk of infection in the first six months of life: a cohort study from a low-middle income country

    Get PDF
    OBJECTIVE: There is limited study from low-and-middle income countries on the effect of perinatal exposure to air pollution and the risk of infection in infant. We assessed the association between perinatal exposure to traffic related air pollution and the risk of infection in infant during their first six months of life. METHODS: A prospective cohort study was performed in Jakarta, March 2016-September 2020 among 298 mother-infant pairs. PM2.5, soot, NOx, and NO2 concentrations were assessed using land use regression models (LUR) at individual level. Repeated interviewer-administered questionnaires were used to obtain data on infection at 1, 2, 4 and 6 months of age. The infections were categorized as upper respiratory tract (runny nose, cough, wheezing or shortness of breath), lower respiratory tract (pneumonia, bronchiolitis) or gastrointestinal tract infection. Logistic regression models adjusted for covariates were used to assess the association between perinatal exposure to air pollution and the risk of infection in the first six months of life. RESULTS: The average concentrations of PM2.5 and NO2 were much higher than the WHO recommended levels. Upper respiratory tract infections (URTI) were much more common in the first six months of life than diagnosed lower respiratory tract or gastro-intestinal infections (35.6%, 3.5% and 5.8% respectively). Perinatal exposure to PM2.5 and soot suggested increase cumulative risk of upper respiratory tract infection (URTI) in the first 6 months of life per IQR increase with adjusted OR of 1.50 (95% CI 0.91; 2.47) and 1.14 (95% CI 0.79; 1.64), respectively. Soot was significantly associated with the risk of URTI at 4-6 months age interval (aOR of 1.45, 95%CI 1.02; 2.09). All air pollutants were also positively associated with lower respiratory tract infection, but all CIs include unity because of relatively small samples. Adjusted odds ratios for gastrointestinal infections were close to unity. CONCLUSION: Our study adds to the evidence that perinatal exposure to fine particles is associated with respiratory tract infection in infants in a low-middle income country
    corecore