659 research outputs found

    Mobility through Heterogeneous Networks in a 4G Environment

    Get PDF
    Serving and Managing users in a heterogeneous environment. 17th WWRF Meeting in Heidelberg, Germany, 15 - 17 November 2006. [Proceeding presented at WG3 - Co-operative and Ad-hoc Networks]The increase will of ubiquitous access of the users to the requested services points towards the integration of heterogeneous networks. In this sense, a user shall be able to access its services through different access technologies, such as WLAN, Wimax, UMTS and DVB technologies, from the same or different network operators, and to seamless move between different networks with active communications. In this paper we propose a mobility architecture able to support this users’ ubiquitous access and seamless movement, while simultaneously bringing a large flexibility to access network operators

    Gluon fusion contribution to W+W- + jet production

    Full text link
    We describe the computation of the ggW+Wggg \to W^+W^-g process that contributes to the production of two WW-bosons and a jet at the CERN Large Hadron Collider (LHC). While formally of next-to-next-to-leading order (NNLO) in QCD, this process can be evaluated separately from the bulk of NNLO QCD corrections because it is finite and gauge-invariant. It is also enhanced by the large gluon flux and by selection cuts employed in the Higgs boson searches in the decay channel HW+W H \to W^+W^-, as was first pointed out by Binoth {\it et al.} in the context of ggW+Wgg \to W^+W^- production. For cuts employed by the ATLAS collaboration, we find that the gluon fusion contribution to ppW+Wjpp \to W^+W^-j enhances the background by about ten percent and can lead to moderate distortions of kinematic distributions which are instrumental for the ongoing Higgs boson searches at the LHC. We also release a public code to compute the NLO QCD corrections to this process, in the form of an add-on to the package {\tt MCFM}.Comment: 13 pages, 4 figures, 3 table

    The Role of Magnetic Field Dissipation in the Black Hole Candidate Sgr A*

    Get PDF
    The compact, nonthermal radio source Sgr A* at the Galactic Center appears to be coincident with a 2.6 million solar mass point-like object. Its energy source may be the release of gravitational energy as gas from the interstellar medium descends into its potential well. Simple attempts at calculating the spectrum and flux based on this picture have come close to the observations, yet have had difficulty in accounting for the low efficiency in this source. There now appear to be two reasons for this low conversion rate: (1) the plasma separates into two temperatures, with the protons attaining a significantly higher temperature than that of the radiating electrons, and (2) the magnetic field, B, is sub-equipartition, which reduces the magnetic bremsstrahlung emissivity, and therefore the overall power of Sgr A*. We investigate the latter with improvement over what has been attempted before: rather than calculating B based on a presumed model, we instead infer its distribution with radius empirically with the requirement that the resulting spectrum matches the observations. Our ansatz for B(r) is motivated in part by earlier calculations of the expected magnetic dissipation rate due to reconnection in a compressed flow. We find reasonable agreement with the observed spectrum of Sgr A* as long as its distribution consists of 3 primary components: an outer equipartition field, a roughly constant field at intermediate radii (~1000 Schwarzschild radii), and an inner dynamo (more or less within the last stable orbit for a non-rotating black hole) which increases B to about 100 Gauss. The latter component accounts for the observed sub-millimiter hump in this source.Comment: 33 pages including 2 figures; submitted to Ap

    The Formation of Broad Line Clouds in the Accretion Shocks of Active Galactic Nuclei

    Get PDF
    Recent work on the gas dynamics in the Galactic Center has improved our understanding of the accretion processes in galactic nuclei, particularly with regard to properties such as the specific angular momentum distribution, density, and temperature of the inflowing plasma. This information can be valuable in trying to determine the origin of the Broad Line Region (BLR) in Active Galactic Nuclei (AGNs). In this paper, we explore various scenarios for the cloud formation based on the underlying principle that the source of plasma is ultimately that portion of the gas trapped by the central black hole from the interstellar medium. Based on what we know about the Galactic Center, it is likely that in highly dynamic environments such as this, the supply of matter is due mostly to stellar winds from the central cluster. Winds accreting onto a central black hole are subjected to several disturbances capable of producing shocks, including a Bondi-Hoyle flow, stellar wind-wind collisions, and turbulence. Shocked gas is initially compressed and heated out of thermal equilibrium with the ambient radiation field; a cooling instability sets in as the gas is cooled via inverse-Compton and bremsstrahlung processes. If the cooling time is less than the dynamical flow time through the shock region, the gas may clump to form the clouds responsible for broad line emission seen in many AGN spectra. Clouds produced by this process display the correct range of densities and velocity fields seen in broad emission lines. Very importantly, the cloud distribution agrees with the results of reverberation studies, in which it is seen that the central line peak responds slower to continuum changes than the line wings.Comment: 22 pages, 5 figure

    Viewing the Shadow of the Black Hole at the Galactic Center

    Get PDF
    In recent years, the evidence for the existence of an ultra-compact concentration of dark mass associated with the radio source Sgr A* in the Galactic Center has become very strong. However, an unambiguous proof that this object is indeed a black hole is still lacking. A defining characteristic of a black hole is the event horizon. To a distant observer, the event horizon casts a relatively large ``shadow'' with an apparent diameter of ~10 gravitational radii due to bending of light by the black hole, nearly independent of the black hole spin or orientation. The predicted size (~30 micro-arcseconds) of this shadow for Sgr A* approaches the resolution of current radio-interferometers. If the black hole is maximally spinning and viewed edge-on, then the shadow will be offset by ~8 micro-arcseconds from the center of mass, and will be slightly flattened on one side. Taking into account scatter-broadening of the image in the interstellar medium and the finite achievable telescope resolution, we show that the shadow of Sgr A* may be observable with very long-baseline interferometry at sub-millimeter wavelengths, assuming that the accretion flow is optically thin in this region of the spectrum. Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years.Comment: 5 pages, 1 figure (color), (AAS)Tex, to appear in The Astrophysical Journal Letters, Vol. 528, L13 (Jan 1, 2000 issue); also available at http://www.mpifr-bonn.mpg.de/staff/hfalcke/publications.html#bhimag

    Where have all the black holes gone?

    Get PDF
    We have calculated stationary models for accretion disks around super-massive black holes in galactic nuclei. Our models show that below a critical mass flow rate of ~3 10**-3 M_Edd advection will dominate the energy budget while above that rate all the viscously liberated energy is radiated. The radiation efficiency declines steeply below that critical rate. This leads to a clear dichotomy between AGN and normal galaxies which is not so much given by differences in the mass flow rate but by the radiation efficiency. At very low mass accretion rates below 5 10**-5 M_Edd synchrotron emission and Bremsstrahlung dominate the SED, while above 2 10**-4 M Edd the inverse Compton radiation from synchrotron seed photons produce flat to inverted SEDs from the radio to X-rays. Finally we discuss the implications of these findings for AGN duty cycles and the long-term AGN evolution.Comment: 7 pages, 5 figures, accepted for publication in A&

    Neutralino dark matter vs galaxy formation

    Get PDF
    Neutralino dark matter may be incompatible with current cold dark matter models with cuspy dark halos, because excessive synchrotron radiation may originate from neutralino annihilations close to the black hole at the galactic center.Comment: 6 pages, 3 figures, talk given at "Sources and detection of dark matter in the Universe", Marina del Rey, CA, February 23-25, 200
    corecore