10 research outputs found

    Cytological and comparative proteomic analyses on male sterility in Brassica napus L. induced by the chemical hybridization agent monosulphuron ester sodium

    Get PDF
    Citation: Cheng Y, Wang Q, Li Z, Cui J, Hu S, et al. (2013) Cytological and Comparative Proteomic Analyses on Male Sterility in Brassica napus L. Induced by the Chemical Hybridization Agent Monosulphuron Ester Sodium. PLoS ONE 8(11): e80191. doi:10.1371/journal.pone.0080191Male sterility induced by a chemical hybridization agent (CHA) is an important tool for utilizing crop heterosis. Monosulphuron ester sodium (MES), a new acetolactate synthase-inhibitor herbicide belonging to the sulphonylurea family, has been developed as an effective CHA to induce male sterility in rapeseed (Brassica napus L.). To understand MES-induced male sterility in rapeseed better, comparative cytological and proteomic analyses were conducted in this study. Cytological analysis indicated that defective tapetal cells and abnormal microspores were gradually generated in the developing anthers of MES-treated plants at various development stages, resulting in unviable microspores and male sterility. A total of 141 differentially expressed proteins between the MES-treated and control plants were revealed, and 131 of them were further identified by MALDI-TOF/TOF MS. Most of these proteins decreased in abundance in tissues of MES-treated rapeseed plants, and only a few increased. Notably, some proteins were absent or induced in developing anthers after MES treatment. These proteins were involved in several processes that may be crucial for tapetum and microspore development. Down-regulation of these proteins may disrupt the coordination of developmental and metabolic processes, resulting in defective tapetum and abnormal microspores that lead to male sterility in MES-treated plants. Accordingly, a simple model of CHA-MES-induced male sterility in rapeseed was established. This study is the first cytological and dynamic proteomic investigation on CHA-MES-induced male sterility in rapeseed, and the results provide new insights into the molecular events of male sterility

    Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease

    Get PDF
    Respiratory syncytial virus (RSV) is a leading cause of hospitalization in infants. A formalin-inactivated RSV vaccine was used to immunize children and elicited nonprotective, pathogenic antibody. Immunized infants experienced increased morbidity after subsequent RSV exposure. No vaccine has been licensed since that time. A widely accepted hypothesis attributed the vaccine failure to formalin disruption of protective antigens. Here we show that the lack of protection was not due to alterations caused by formalin but instead to low antibody avidity for protective epitopes. Lack of antibody affinity maturation followed poor Toll-like receptor (TLR) stimulation. This study explains why the inactivated RSV vaccine did not protect the children and consequently led to severe disease, hampering vaccine development for 42 years. It also suggests that inactivated RSV vaccines may be rendered safe and effective by inclusion of TLR agonists in their formulation, and it identifies affinity maturation as a key factor for the safe immunization of infants.Fil: Delgado, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Coviello, Silvina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Monsalvo, Ana Clara. Fundación para la Investigación en Infectología Infantil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Melendi, Guillermina Amanda. Fundación para la Investigación en Infectología Infantil; Argentina. University Johns Hopkins; Estados UnidosFil: Hernandez, Johanna Zea. Fundación para la Investigación en Infectología Infantil; Argentina. University Johns Hopkins; Estados UnidosFil: Batalle, Juan Pio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Diaz, Leandro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Trento, Alfonsina. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Chang, Herng-Yu. University Johns Hopkins; Estados UnidosFil: Mitzner, Wayne. University Johns Hopkins; Estados UnidosFil: Ravetch, Jeffrey. The Rockefeller University; Estados UnidosFil: Melero, José A.. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: Irusta, Pablo M.. University Of Georgetown; Estados Unidos. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; Argentina. University Johns Hopkins; Estados Unido

    Premature Infants have Impaired Airway Antiviral IFNγ Responses to Human Metapneumovirus Compared to Respiratory Syncytial Virus.

    No full text
    Background: It is unknown why human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) cause severe respiratory infection in children, particularly in premature infants. Our aim was to investigate if there are defective airway antiviral responses to these viruses in young children with history of prematurity. Methods: Nasal airway secretions were collected from 140 children ≤3 y old without detectable virus (n = 80) or with PCR-confirmed HMPV or RSV infection (n = 60). Nasal protein levels of IFNγ, CCL5/RANTES, IL-10, IL-4, and IL-17 were determined using a multiplex magnetic bead immunoassay. Results: Full-term children with HMPV and RSV infection had increased levels of nasal airway IFNγ, CCL5, and IL-10 along with an elevation in Th1 (IFNγ)/Th2 (IL-4) ratios, which is expected during antiviral responses. In contrast, HMPV-infected premature children (< 32 wk gestation) did not exhibit increased Th1/Th2 ratios or elevated nasal airway secretion of IFNγ, CCL5, and IL-10 relative to uninfected controls. Conclusion: Our study is the first to demonstrate that premature infants have defective IFNγ, CCL5/RANTES, and IL-10 airway responses during HMPV infection and provides novel insights about the potential reason why HMPV causes severe respiratory disease in children with history of prematurity
    corecore