18 research outputs found

    The novel S527F mutation in the integrin beta3 chain induces a high affinity alphaIIbbeta3 receptor by hindering adoption of the bent conformation.

    Get PDF
    peer reviewedThree heterozygous mutations were identified in the genes encoding platelet integrin receptor alphaIIbbeta3 in a patient with an ill defined platelet disorder: one in the beta3 gene (S527F) and two in the alphaIIb gene (R512W and L841M). Five stable Chinese hamster ovary cell lines were constructed expressing recombinant alphaIIbbeta3 receptors bearing the individual R512W, L841M, or S527F mutation; both the R512W and L841M mutations; or all three mutations. All receptors were expressed on the cell surface, and mutations R512W and L841M had no effect on integrin function. Interestingly, the beta3 S527F mutation produced a constitutively active receptor. Indeed, both fibrinogen and the ligand-mimetic antibody PAC-1 bound to non-activated alphaIIbbeta3 receptors carrying the S527F mutation, indicating that the conformation of this receptor was altered and corresponded to the high affinity ligand binding state. In addition, the conformational change induced by S527F was evident from basal anti-ligand-induced binding site antibody binding to the receptor. A molecular model bearing this mutation was constructed based on the crystal structure of alphaIIbbeta3 and revealed that the S527F mutation, situated in the third integrin epidermal growth factor-like (I-EGF3) domain, hindered the alphaIIbbeta3 receptor from adopting a wild type-like bent conformation. Movement of I-EGF3 into a cleft in the bent conformation may be hampered both by steric hindrance between Phe(527) in beta3 and the calf-1 domain in alphaIIb and by decreased flexibility between I-EGF2 and I-EGF3

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    STIM1 but not STIM2 is an essential regulator of Ca2+ influx-mediated NADPH oxidase activity in neutrophil-like HL-60 cells

    No full text
    Extracellular Ca2+ entry, primarily mediated through store-operated Ca2+ entry (SOCE), is known to be a critical event for NADPH oxidase (NOX2) regulation in neutrophils. While defective NOX2 activity has been linked to various inflammatory diseases, regulatory mechanisms that control Ca2+ influx-induced NOX2 activation are poorly understood in SOCE. The role of STIM1, a Ca2+ sensor that transduces the store depletion signal to the plasma membrane, seems well established and supported by numerous studies in non-phagocytic cells. Here, in neutrophil-like HL-60 cells we used a siRNA approach to delineate the effect of STIM1 knock-down on NOX2 activity regulated by Ca2+ influx. Because the function of the STIM1 homolog, STIM2, is still unclear, we determined the consequence of STIM2 knock-down on Ca2+ and NOX2. STIM1 and STIM2 knock-down was effective and isoform specific when assayed by real-time PCR and Western blotting. Consistent with a unique role of STIM1 in the regulation of SOCE, STIM1, but not STIM2, siRNA significantly decreased Ca2+ influx induced by fMLF or the SERCA pump inhibitor thapsigargin. A redistribution of STIM1, originally localized intracellularly, near the plasma membrane was observed by confocal microscopy upon stimulation by fMLF. Inhibition of STIM1-induced SOCE led to a marked decrease in NOX2 activity while STIM2 siRNA had no effect. Thus, our results provide evidence for a role of STIM1 protein in the control of Ca2+ influx in neutrophils excluding a STIM2 involvement in this process. It also places STIM1 as a key modulator of NOX2 activity with a potential interest for anti-inflammatory pharmacological development

    Co-cultures of Human Coronary Smooth Muscle Cells and Dimethyl Sulfoxide-differentiated HL60 Cells Upregulate ProMMP9 Activity and Promote Mobility"”Modulation By Reactive Oxygen Species

    No full text
    Vascular cells and leukocytes, involved in the development of atherosclerosis, produce cytokines and/or reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) implicated in cell mobility. We investigated by co-culture experiments the effects of human coronary smooth muscle cells (HCSMC) on MMPs characteristics and mobility of neutrophil-like dimethyl sulfoxide-differentiated HL60 cells (≠HL60). The effects of superoxide dismutase (SOD) and catalase were also analyzed. All the studied MMP2 characteristics remained unchanged. HCSMC stimulated MMP9 protein level, activity and mobility of ≠HL60 cells and expressed and secreted a variety of cytokines implicated in atherosclerosis. SOD and catalase increased MMP9 expression, protein level and activity of ≠HL60, but migration of ≠HL60 cells was only decreased by catalase, demonstrating that ROS are more efficient in modulating MMP9 activity of ≠HL60 than their mobility. Finally, HCSMC being able to stimulate ≠HL60, their co-cultures may represent an in vitro approach to study cellular interactions occurring in vivo during atherosclerosis

    An essential role of STIM1, Orai1, and S100A8-A9 proteins for Ca2+ signaling and FcγR-mediated phagosomal oxidative activity

    No full text
    Phagocytosis is a process of innate immunity that allows for the enclosure of pathogens within the phagosome and their subsequent destruction through the production of reactive oxygen species (ROS). Although these processes have been associated with increases of intracellular Ca(2+) concentrations, the mechanisms by which Ca(2+) could regulate the different phases of phagocytosis remain unknown. The aim of this study was to investigate the Ca(2+) signaling pathways involved in the regulation of FcγRs-induced phagocytosis. Our work focuses on IgG-opsonized zymosan internalization and phagosomal ROS production in DMSO-differentiated HL-60 cells and neutrophils. We found that chelation of intracellular Ca(2+) by BAPTA or emptying of the intracellular Ca(2+) store by thapsigargin reduced the efficiency of zymosan internalization. Using an small interfering RNA strategy, our data establish that the observed Ca(2+) release occurs through two isoforms of inositol 1,4,5-triphosphate receptors, ITPR1 and ITPR3. In addition, we provide evidence that phagosomal ROS production is dependent on extracellular Ca(2+) entry. We demonstrate that the observed Ca(2+) influx is supported by ORAI calcium release-activated calcium modulator 1 (Orai1) and stromal interaction molecule 1 (STIM1). This result suggests that extracellular Ca(2+) entry, which is required for ROS production, is mediated by a store-operated Ca(2+) mechanism. Finally, our data identify the complex formed by S100A8 and S100A9 (S100 calcium-binding protein A8 and A9 complex), two Ca(2+)-binding proteins, as the site of interplay between extracellular Ca(2+) entry and intraphagosomal ROS production. Thus, we demonstrate that FcγR-mediated phagocytosis requires intracellular Ca(2+) store depletion for the internalization phase. Then phagosomal ROS production requires extracellular Ca(2+) entry mediated by Orai1/STIM1 and relayed by S100A8-A9 as Ca(2+) sensor

    Store-operated Ca2+ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes

    No full text
    Ca(2+) influx has been shown to be essential for NADPH oxidase activity which is involved in the inflammatory process. Ca(2+) conditions underlying the oxidative response are clearly delineated. Here, we show that store-operated Ca(2+) entry (SOCE) is required at the beginning of NADPH oxidase activation in response to fMLF (N-formyl-l-methionyl-l-leucyl-l-phenylalanine ) in neutrophil-like HL-60 cells. When extracellular Ca(2+) is initially removed, early addition of Ca(2+) after stimulation causes a complete restoration of Ca(2+) entry and H(2)O(2) production. Both Ca(2+) entry and H(2)O(2) production are decreased by purported SOCE blockers, 2-aminoethoxydiphenyl borane (2-APB) and SK&F 96365. Endogenously expressed TRPC (transient receptor potential canonical) homologues and Orai1 were investigated for their role in supporting store-operated Ca(2+) channels activity. TRPC1, TRPC6 and Orai1 knock-out by siRNA resulted in the inhibition of Ca(2+) influx and H(2)O(2) production in response to fMLF and thapsigargin while suppression of TRPC3 had no effect on thapsigargin induced-SOCE. 2-APB and SK&F 96365 were able to amplify the reduction of fMLF-stimulated Ca(2+) entry and H(2)O(2) production observed in cells transfected by TRPC3 siRNA. In summary, Ca(2+) influx in HL-60 cells relies on different membrane TRPC channels and Orai1 for allowing NADPH oxidase activation. TRPC3 primarily mediates SOCE-independent pathways and TRPC1, TRPC6 and Orai1 exclusively contribute to SOCE

    Sphingosine kinases regulate NOX2 activity via p38 MAPK-dependent translocation of S100A8/A9

    No full text
    Neutrophils play a fundamental role in host defense by neutralizing pathogens through the generation of ROS by NOX2. In nonexcitable cells, Ca(2+) influx is essentially mediated via SOCE, a complex mechanism in which depletion of intracellular Ca(2+) stores from the ER results in Ca(2+) entry through Ca(2+) SOCs at the plasma membrane. In this regard, it is well established that extracellular Ca(2+) entry participates to NOX2 activation. S1P, produced by SphKs, has been involved in Ca(2+) homeostasis and thus, could intervene in NOX2 regulation. The aim of this study was to characterize the importance of SphKs in NOX2 activation and the signaling cascade involved in this mechanism. Treatment of neutrophil-like dHL-60 cells by DHS, a SphK inhibitor, and SphK siRNA inhibited fMLF-induced NOX2 activity. Sequential activation of cells by thapsigargin and the phorbol ester PMA revealed that SphK-regulated NOX2 activity relies on intracellular Ca(2+) store depletion. Confocal microscopy and immunoblot analysis showed that stimulation by thapsigargin and PMA mediated S100A8/A9 recruitment to the plasma membrane and p38 MAPK activation. S100A8/A9 translocation decreased when SphK activity was blocked. This result was confirmed in purified human neutrophils, which were physiologically stimulated by fMLF. In addition, p38 MAPK was found to be regulated by SphKs. These results define a pathway leading to NOX2 activation, in which p38 MAPK-mediated S100A8/A9 translocation is regulated by Ca(2+) store depletion-dependent SphK activation

    Distinct involvement of beta3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phosphotyrosine signaling.

    No full text
    We have investigated the structural requirements of the beta3 integrin subunit cytoplasmic domain necessary for tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin during alphav beta3-mediated cell spreading. Using CHO cells transfected with various beta3 mutants, we demonstrate a close correlation between alphav beta3-mediated cell spreading and tyrosine phosphorylation of FAK and paxillin, and highlight a distinct involvement of the NPLY747 and NITY759 motifs in these signaling processes. Deletion of the NITY759 motif alone was sufficient to completely prevent alphav beta3-dependent focal contact formation, cell spreading, and FAK/paxillin phosphorylation. The single Y759A substitution induced a strong inhibitory phenotype, while the more conservative, but still phosphorylation-defective, Y759F mutation restored wild type receptor function. Alanine substitution of the highly conserved Tyr747 completely abolished alphav beta3-dependent formation of focal adhesion plaques, cell spreading, and FAK/paxillin phosphorylation, whereas a Y747F substitution only partially restored these events. As none of these mutations affected receptor-ligand interaction, our results suggest that the structural integrity of the NITY759 motif, rather than the phosphorylation status of Tyr759 is important for beta3-mediated cytoskeleton reorganization and tyrosine phosphorylation of FAK and paxillin, while the presence of Tyr at residue 747 within the NPLY747 motif is required for optimal beta3 post-ligand binding events

    Cell passaging rapidly affects expression, secretion and activity of MMP9 as well as mobility of HL60 leukemia cells

    No full text
    The HL60 cell line, derived from acute promyelocytic leukemia cells, can differentiate into neutrophil-like cell following DMSO treatment. Mobility of HL60, or DMSO-differentiated HL60 cells (≠HL60), requires surface expression of adhesion molecules and production of matrix metalloproteinases (MMPs). The aim of this study was to investigate in HL60 and ≠HL60 the effects of cell passaging (over 5 passages after delivery (P and P+5)) on i) surface expression of adhesion molecule CD11b, which is considered a neutrophil differentiation marker ii) MMP9 mRNA expression, protein release and zymographic activity and iii) cellular mobility. As expected, CD11b expression at both cell passages increased in ≠HL60 relative to undifferentiated HL60, but expression levels of this neutrophils marker did not change over 5 passages. MMP9 mRNA expression however, in basal conditions was increased in HL60 at P+5. At P+5 versus P, MMP9 protein levels, MMP9 zymographic activity and cellular mobility in HL60 and ≠HL60 were elevated. Stimulation by N-formyl-L-Methionyl-L-Leucyl-L-Phenylalanine had no effects on HL60, but raised MMP9 protein concentration and zymographic activity in ≠HL60. Since passage history is likely to also influence cellular functions other than MMP-related effects, it is important to carefully consider passage numbers when designing experiment
    corecore