399 research outputs found

    Identification of signaling pathways related to drug efficacy in hepatocellular carcinoma via integration of phosphoproteomic, genomic and clinical data

    Get PDF
    Hepatocellular Carcinoma (HCC) is one of the leading causes of death worldwide, with only a handful of treatments effective in unresectable HCC. Most of the clinical trials for HCC using new generation interventions (drug-targeted therapies) have poor efficacy whereas just a few of them show some promising clinical outcomes [1]. This is amongst the first studies where the mode of action of some of the compounds extensively used in clinical trials is interrogated on the phosphoproteomic level, in an attempt to build predictive models for clinical efficacy. Signaling data are combined with previously published gene expression and clinical data within a consistent framework that identifies drug effects on the phosphoproteomic level and translates them to the gene expression level. The interrogated drugs are then correlated with genes differentially expressed in normal versus tumor tissue, and genes predictive of patient survival. Although the number of clinical trial results considered is small, our approach shows potential for discerning signaling activities that may help predict drug efficacy for HCC.National Institutes of Health (U.S.) (Grant U54-CA119267)National Institutes of Health (U.S.) (Grant R01-CA96504

    Two dimensional Berezin-Li-Yau inequalities with a correction term

    Full text link
    We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is almost optimal. This improves a previous result by Melas.Comment: 6 figure

    Combined logical and data-driven models for linking signalling pathways to cellular response

    Get PDF
    Background Signalling pathways are the cornerstone on understanding cell function and predicting cell behavior. Recently, logical models of canonical pathways have been optimised with high-throughput phosphoproteomic data to construct cell-type specific pathways. However, less is known on how signalling pathways can be linked to a cellular response such as cell growth, death, cytokine secretion, or transcriptional activity. Results In this work, we measure the signalling activity (phosphorylation levels) and phenotypic behavior (cytokine secretion) of normal and cancer hepatocytes treated with a combination of cytokines and inhibitors. Using the two datasets, we construct "extended" pathways that integrate intracellular activity with cellular responses using a hybrid logical/data-driven computational approach. Boolean logic is used whenever a priori knowledge is accessible (i.e., construction of canonical pathways), whereas a data-driven approach is used for linking cellular behavior to signalling activity via non-canonical edges. The extended pathway is subsequently optimised to fit signalling and behavioural data using an Integer Linear Programming formulation. As a result, we are able to construct maps of primary and transformed hepatocytes downstream of 7 receptors that are capable of explaining the secretion of 22 cytokines. Conclusions We developed a method for constructing extended pathways that start at the receptor level and via a complex intracellular signalling pathway identify those mechanisms that drive cellular behaviour. Our results constitute a proof-of-principle for construction of "extended pathways" that are capable of linking pathway activity to diverse responses such as growth, death, differentiation, gene expression, or cytokine secretion.Marie Curie International Reintegration Grants (MIRG-14-CT-2007-046531)Vertex Pharmaceuticals IncorporatedBundesministerium für Wissenschaft und Forschung (HepatoSys)Massachusetts Institute of Technology (Rockwell International Career Development Professorship)Bundesministerium für Wissenschaft und Forschung (HepatoSys 0313081D

    Translational systems pharmacology‐based predictive assessment of drug‐induced cardiomyopathy

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142916/1/psp412272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142916/2/psp412272_am.pd

    Translational Systems Pharmacology-Based Predictive Assessment of Drug-Induced Cardiomyopathy

    Get PDF
    Drug-induced cardiomyopathy contributes to drug attrition. We compared two pipelines of predictive modeling: (1) applying elastic net (EN) to differentially expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to construct each drug’s signaling pathway starting from its targets to downstream proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then subjecting the genes/proteins in the drugs’ signaling networks to EN regression. We classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP-augmented modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%; specificity: 89%) under leave-one-out cross validation. The ILP-constructed signaling networks of drugs were better predictors than DEGs. Per literature, the microRNAs that reportedly regulate expression of our six top predictors are of diagnostic value for natural heart failure or doxorubicin-induced cardiomyopathy. This translational predictive modeling might uncover potential biomarkers

    Towards Canonical Quantum Gravity for G1 Geometries in 2+1 Dimensions with a Lambda--Term

    Full text link
    The canonical analysis and subsequent quantization of the (2+1)-dimensional action of pure gravity plus a cosmological constant term is considered, under the assumption of the existence of one spacelike Killing vector field. The proper imposition of the quantum analogues of the two linear (momentum) constraints reduces an initial collection of state vectors, consisting of all smooth functionals of the components (and/or their derivatives) of the spatial metric, to particular scalar smooth functionals. The demand that the midi-superspace metric (inferred from the kinetic part of the quadratic (Hamiltonian) constraint) must define on the space of these states an induced metric whose components are given in terms of the same states, which is made possible through an appropriate re-normalization assumption, severely reduces the possible state vectors to three unique (up to general coordinate transformations) smooth scalar functionals. The quantum analogue of the Hamiltonian constraint produces a Wheeler-DeWitt equation based on this reduced manifold of states, which is completely integrated.Comment: Latex 2e source file, 25 pages, no figures, final version (accepted in CQG

    Identification of drug-specific pathways based on gene expression data: application to drug induced lung injury

    Get PDF
    Identification of signaling pathways that are functional in a specific biological context is a major challenge in systems biology, and could be instrumental to the study of complex diseases and various aspects of drug discovery. Recent approaches have attempted to combine gene expression data with prior knowledge of protein connectivity in the form of a PPI network, and employ computational methods to identify subsets of the protein–protein-interaction (PPI) network that are functional, based on the data at hand. However, the use of undirected networks limits the mechanistic insight that can be drawn, since it does not allow for following mechanistically signal transduction from one node to the next. To address this important issue, we used a directed, signaling network as a scaffold to represent protein connectivity, and implemented an Integer Linear Programming (ILP) formulation to model the rules of signal transduction from one node to the next in the network. We then optimized the structure of the network to best fit the gene expression data at hand. We illustrated the utility of ILP modeling with a case study of drug induced lung injury. We identified the modes of action of 200 lung toxic drugs based on their gene expression profiles and, subsequently, merged the drug specific pathways to construct a signaling network that captured the mechanisms underlying Drug Induced Lung Disease (DILD). We further demonstrated the predictive power and biological relevance of the DILD network by applying it to identify drugs with relevant pharmacological mechanisms for treating lung injury.Institute for Collaborative Biotechnologies (Grant W911NF-09-0001

    Glycaemic control and hypoglycaemia benefits with insulin glargine 300 U/mL extend to people with type 2 diabetes and mild-to-moderate renal impairment

    Get PDF
    Aim: To investigate the impact of renal function on the safety and efficacy of insulin glargine 300 U/mL (Gla-300) and insulin glargine 100 U/mL (Gla-100). Materials and Methods: A meta-analysis was performed using pooled 6-month data from the EDITION 1, 2 and 3 trials (N = 2496). Eligible participants, aged ≥18 years with a diagnosis of type 2 diabetes (T2DM), were randomized to receive once-daily evening injections of Gla-300 or Gla-100. Pooled results were assessed by two renal function subgroups: estimated glomerular filtration rate (eGFR) <60 and ≥60 mL/min/1.73 m2 . Results: The decrease in glycated haemoglobin (HbA1c) after 6 months and the proportion of individuals with T2DM achieving HbA1c targets were similar in the Gla-300 and Gla-100 groups, for both renal function subgroups. There was a reduced risk of nocturnal (12:00-5:59 AM) confirmed (≤3.9 mmol/L [≤70 mg/dL]) or severe hypoglycaemia with Gla-300 in both renal function subgroups (eGFR <60 mL/min/1.73 m2 : relative risk [RR] 0.76 [95% confidence interval {CI} 0.62-0.94] and eGFR ≥60 mL/min/1.73 m2 : RR 0.75 [95% CI 0.67-0.85]). For confirmed (≤70 mg/dL [≤3.9 mmol/L]) or severe hypoglycaemia at any time of day (24 hours) the hypoglycaemia risk was lower with Gla-300 vs Gla-100 in both the lower (RR 0.94 [95% CI 0.86-1.03]) and higher (RR 0.90 [95% CI 0.85-0.95]) eGFR subgroups. Conclusions: Gla-300 provided similar glycaemic control to Gla-100, while indicating a reduced overall risk of confirmed (≤3.9 and <3.0 mmol/L [≤70 and <54 mg/dL]) or severe hypoglycaemia, with no significant difference between renal function subgroups

    A crowd-sourcing approach for the construction of species-specific cell signaling networks

    Get PDF
    Motivation: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs. Results: The sbv IMPROVER Species-Specific Network Inference challenge was designed to use the power of the crowds to build two species-specific cell signaling networks given phosphoproteomics, transcriptomics and cytokine data generated from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired reference network with 220 nodes and 501 edges was also provided as prior knowledge from which challenge participants could add or remove edges but not nodes. Such a large network inference challenge not based on synthetic simulations but on real data presented unique difficulties in scoring and interpreting the results. Because any prior knowledge about the networks was already provided to the participants for reference, novel ways for scoring and aggregating the results were developed. Two human and rat consensus networks were obtained by combining all the inferred networks. Further analysis showed that major signaling pathways were conserved between the two species with only isolated components diverging, as in the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred edges was relatively high with the exception of the downstream targets of transcription factors, which seemed more difficult to predict. Contact: [email protected] or [email protected]. Supplementary information: Supplementary data are available at Bioinformatics onlin
    corecore