7 research outputs found

    Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for production of Biocompatible Gold Nanoparticles

    Get PDF
    Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve a dual role as effective reducing agents to reduce gold and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. The tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and T-AuNPs have been found to be non toxic as assessed through MTT assays. No `man made' chemicals, other than gold salts, are used in this truly biogenic, green nanotechnological process thus paving the way for excellent opportunities for their application in molecular imaging and therapy

    Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles

    No full text
    The present study demonstrates an unprecedented green process for the production of gold nanoparticles by simple treatment of gold salts with soybean extracts. Reduction capabilities of antioxidant phytochemicals present in soybean and their ability to reduce gold salts chemically to nanoparticles with subsequent coating of proteins and a host of other phytochemicals present in soybean on the freshly generated gold nanoparticles are discussed. The new genre of green nanoparticles exhibit remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy. The overall strategy described herein for the generation of gold nanoparticles meets all 12 principles of green chemistry, as no "man-made" chemicals, other than the gold salts, are used in the green nanotechnological process
    corecore