5,813 research outputs found

    Schwinger's oscillator method, supersymmetric quantum mechanics and massless particles

    Get PDF
    We consider the Schwinger's method of angular momentum addition using the SU(2) algebra with both a fermionic and a bosonic oscillator. We show that the total spin states obtained are: one boson singlet state and an arbitrary number of spin-1/2 states, the later ones are energy degenerate. It means that we have in this case supersymmetric quantum mechanics and also the addition of angular momentum for massless particles. We review too the cases of two bosonic and fermionic oscillators.Comment: 11 pages,RevTe

    Plio-Pleistocene time-averaged field in southern Patagonia recorded in lava flows

    Get PDF
    Paleomagnetic directions were obtained from stepwise alternating-field or thermal demagnetization of 53 lava flows from southern Patagonia (latitudes 49.5°-52.1 °S) that include the Pali-Aike volcanic field and the Meseta Viscachas plateau lavas. In addition to previous Miocene-late Quaternary ages of these flows, 40Ar/39Ar dates spanning from 0.1 to 15.4 Ma were obtained for 17 of the sites. All except one of the magnetic polarities coincide with the expected polarities of the magnetic polarity timescale [Cande and Kent, 1995] for the obtained 40Ar/39Ar ages. The mean direction from 33 sites (eliminating sites <4 Ma) that pass a selection criteria of α95 ≤5° is Dec = 358.7°,Inc = - 68.2°, α95 = 3.5°, a value that coincides within the statistical uncertainty with the direction of the geocentric axial dipole for that area (Inc = - 68.1°). Likewise, the mean virtual geomagnetic pole (VGP) coincides within the statistical uncertainty with the geographic North Pole. The secular variation described by the VGP angular standard deviation for these sites is 17.1°, a value expected for that latitude according to Model G of paleosecular variation [McFadden et al., 1988]. The characteristics of the data presented are optimum for time-averaged field (TAF) studies because of the good age control and good quality of the paleomagnetic data: (1) primary components of magnetization were obtained using principal component analysis [Kirschvink, 1980] from at least five points and maximum angular deviation ≤5°, (2) site means were calculated with Fisher statistics using at least three samples, and (c) 38 of the 53 flows had α95 ≤ 5°. No results (five sites) or high α95 values (≤5°) were obtained primarily from sites affected by lightning.Fil: Mejia, V.. University of Florida; Estados UnidosFil: Opdyke, N. D.. University of Florida; Estados UnidosFil: Vilas, Juan Francisco A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Singer, B. S.. University of Wisconsin; Estados UnidosFil: Stoner, J. S.. State University of Colorado at Boulder; Estados Unido

    Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices

    Get PDF
    We present the development of Ag/Ge based ohmic contacts to n-type InP with both low contact resistances and relatively low optical losses. A specific contact resistance as low as 1.5×10-6 O cm2 is achieved by optimizing the Ge layer thickness and annealing conditions. The use of Ge instead of metal as the first deposited layer results in a low optical absorption loss in the telecommunication wavelength range. Compared to Au based contacts, the Ag based metallization also shows considerably reduced spiking effects after annealing. Contacts with different lengths are deposited on top of InP membrane waveguides to characterize the optical loss before and after annealing. A factor of 5 reduction of the propagation loss compared to the conventional Au/Ge/Ni contact is demonstrated. This allows for much more optimized designs for membrane photonic devices

    Heat flux operator, current conservation and the formal Fourier's law

    Full text link
    By revisiting previous definitions of the heat current operator, we show that one can define a heat current operator that satisfies the continuity equation for a general Hamiltonian in one dimension. This expression is useful for studying electronic, phononic and photonic energy flow in linear systems and in hybrid structures. The definition allows us to deduce the necessary conditions that result in current conservation for general-statistics systems. The discrete form of the Fourier's Law of heat conduction naturally emerges in the present definition

    Third quantization: a general method to solve master equations for quadratic open Fermi systems

    Full text link
    The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbor Heisenberg XY spin 1/2 chain in a transverse magnetic field.Comment: 24 pages, with 8 eps figures - few minor corrections to the published version, e.g. anti-symmetrizing the matrix given by eq. (27

    Spin Structure of Many-Body Systems with Two-Body Random Interactions

    Get PDF
    We investigate the spin structure of many-fermion systems with a spin-conserving two-body random interaction. We find a strong dominance of spin-0 ground states and considerable correlations between energies and wave functions of low-lying states with different spin, but no indication of pairing. The spectral densities exhibit spin-dependent shapes and widths, and depend on the relative strengths of the spin-0 and spin-1 couplings in the two-body random matrix. The spin structure of low-lying states can largely be explained analytically.Comment: 10 pages, including 3 figure

    Entropy production and wave packet dynamics in the Fock space of closed chaotic many-body systems

    Full text link
    Highly excited many-particle states in quantum systems such as nuclei, atoms, quantum dots, spin systems, quantum computers etc., can be considered as ``chaotic'' superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is due to a very high level density of many-body states that are easily mixed by a residual interaction between particles (quasi-particles). For such systems, we have derived simple analytical expressions for the time dependence of energy width of wave packets, as well as for the entropy, number of principal basis components and inverse participation ratio, and tested them in numerical experiments. It is shown that the energy width Δ(t)\Delta (t) increases linearly and very quickly saturates. The entropy of a system increases quadratically, S(t)t2S(t) \sim t^2 at small times, and after, can grow linearly, S(t)tS(t) \sim t, before the saturation. Correspondingly, the number of principal components determined by the entropy, Npcexp(S(t))N_{pc} \sim exp{(S(t))}, or by the inverse participation ratio, increases exponentially fast before the saturation. These results are explained in terms of a cascade model which describes the flow of excitation in the Fock space of basis components. Finally, a striking phenomenon of damped oscillations in the Fock space at the transition to an equilibrium is discussed.Comment: RevTex, 14 pages including 12 eps-figure

    Inhibition of HIV-1 gene expression by Sam68ΔC: multiple targets but a common mechanism?

    Get PDF
    Two recent publications have explored the mechanisms by which a mutant of the host protein Sam68 blocks HIV-1 structural protein synthesis and expands its activity to encompass Nef. Although the two studies propose different mechanisms for the responses observed, it is possible that a common activity is responsible. Understanding how this Sam68 mutant discriminates among the multiple viral mRNAs promises to reveal unique properties of HIV-1 RNA metabolism
    corecore