16 research outputs found
Absence of Structural Impact of Noble Nanoparticles on P3HT: PCBM Blends for Plasmon Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron Grazing Incidence X-Ray Diffraction
The incorporation of noble metal nanoparticles, displaying localized surface
plasmon resonance, in the active area of donor-acceptor bulk-heterojunction
organic photovoltaic devices is an industrially compatible light trapping
strategy, able to guarantee better absorption of the incident photons and give
an efficiency improvement between 12% and 38%. In the present work, we
investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on
the P3HT crystallization dynamics by synchrotron grazing incidence X-ray
diffraction. We conclude that the presence of (1) 80nm Au, (2) mix of 5nm,
50nm, 80nm Au, (3) 40nm Ag, and (4) 10nm, 40nm, 60nm Ag colloidal
nanoparticles, at different concentrations below 0.3 wt% in P3HT: PCBM blends,
does not affect the behaviour of the blends themselves
Recommended from our members
Back-Contact Perovskite Solar Cells
Interdigitated back-contact (IBC) architectures are the best performing technology in crystalline Si (c-Si) photovoltaics (PV). Although single junction perovskite solar cells have now surpassed 23% efficiency, most of the research has mainly focussed on planar and mesostructured architectures. The number of studies involving IBC devices is still limited and the proposed architectures are unfeasible for large scale manufacturing. Here we discuss the importance of IBC solar cells as a powerful tool for investigating the fundamental working mechanisms of perovskite materials. We show a detailed fabrication protocol for IBC perovskite devices that does not involve photolithography and metal evaporation. The interview is available at https://youtu.be/nvuNC29TvOY.The authors thank the Engineering and Physical Sciences Research Council (EPSRC). XMaS is a mid-range facility supported by the EPSRC. The authors also thank all the XMaS beamline team staff for their support. M.A.-J. thanks Cambridge Materials Limited and EPSRC (EP/M005143/1) for their funding and technical support. M.A. acknowledges support from the President of the UAE’s Distinguished Student Scholarship Program (DSS), granted by the UAE’s Ministry of Presidential Affairs
Recommended from our members
Photon recycling in lead iodide perovskite solar cells.
Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.The authors acknowledge financial support from the Engineering and Physical Sciences Research Council of the UK (EPSRC) and King Abdulaziz City for Science and Technology (KACST). L.M.P.O. and H.J.B. also thank the Nano doctoral training center (NanoDTC) for financial support. M.S., M.V. and J.M.R. thank the Winton programme for the physics of sustainability. M.C.Q would like to thank the Marie Curie Actions (FP7-PEOPLE-IEF2013) for funding. M.A.J. thanks Nyak Technology Ltd for PhD scholarship and B.E. acknowledges the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). F.D. acknowledges funding through a Herchel Smith Research Fellowship. We acknowledge Prof. Henning Sirringhaus, Prof. Neil Greenham, Prof. Ullrich Steiner, Dr. Erwin Reisner and Prof. Richard Phillips for providing support and access to their facilities.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aaf116
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.M.A.-J. thanks Nava Technology Limited and Nyak Technology Limited for their funding and technical support. Z.A.-G. acknowledges funding from a Winton Studentship, and ICON Studentship from the Lloyd’s Register Foundation. This project has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number PIOF-GA-2013-622630, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 756962), and the Royal Society and Tata Group (UF150033). We thank the Engineering and Physical Sciences Research Council (EPSRC) for support. XMaS is a mid-range facility at the European Synchrotron Radiation Facility supported by the EPSRC and we are grateful to the XMaS beamline team staff for their support. We thank Diamond Light Source for access to beamline I09 and staff member T.-L. Lee as well as U. Cappel for assistance during the HAXPES measurements. S.C., C.D. and G.D. acknowledge funding from the ERC under grant number 25961976 PHOTO EM and financial support from the European Union under grant number 77 312483 ESTEEM2. M.A. thanks the president of the UAE’s Distinguished Student Scholarship Program, granted by the Ministry of Presidential Affairs. H.R. and B.P. acknowledge support from the Swedish research council (2014-6019) and the Swedish foundation for strategic research. E.M.H. and T.J.S. were supported by the Netherlands Organization for Scientific Research under the Echo grant number 712.014.007
High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes
Perovskite-based optoelectronic devices have gained significant attention due
to their remarkable performance and low processing cost, particularly for solar
cells. However, for perovskite light-emitting diodes (LEDs), non-radiative
charge carrier recombination has limited electroluminescence (EL) efficiency.
Here we demonstrate perovskite-polymer bulk heterostructure LEDs exhibiting
record-high external quantum efficiencies (EQEs) exceeding 20%, and an EL
half-life of 46 hours under continuous operation. This performance is achieved
with an emissive layer comprising quasi-2D and 3D perovskites and an insulating
polymer. Transient optical spectroscopy reveals that photogenerated excitations
at the quasi-2D perovskite component migrate to lower-energy sites within 1 ps.
The dominant component of the photoluminescence (PL) is primarily bimolecular
and is characteristic of the 3D regions. From PL quantum efficiency and
transient kinetics of the emissive layer with/without charge-transport
contacts, we find non-radiative recombination pathways to be effectively
eliminated. Light outcoupling from planar LEDs, as used in OLED displays,
generally limits EQE to 20-30%, and we model our reported EL efficiency of over
20% in the forward direction to indicate the internal quantum efficiency (IQE)
to be close to 100%. Together with the low drive voltages needed to achieve
useful photon fluxes (2-3 V for 0.1-1 mA/cm2), these results establish that
perovskite-based LEDs have significant potential for light-emission
applications
Recommended from our members
Correlating Structural and Opto-electrical Properties of Perovskite Solar Cells
Perovskite photovoltaics is one of the fastest growing opto-electronic technologies with device efficiencies currently exceeding 23%. The opportunity to deposit these abundant materials with large area solution processing techniques could make perovskites viable for low-cost production. However, since perovskite materials are prone to degradation, their lifetime needs to be improved to that of silicon solar cells before these devices can be commercialized. Moreover, unlike most semiconductors, trap densities in polycrystalline perovskite films in high-performing devices have been determined to be relatively large, suggesting a remarkable defect tolerance in perovskite films that needs to be understood in the context of the nature of the trap states and any residual non- radiative losses. These non-radiative losses are observed as photoluminescence heterogeneity within perovskite films, even for high-performing perovskite systems. In this work, we explore the degradation kinetics of perovskite devices under stress conditions and find that further stability improvements should focus on the mitigation of trap generation during ageing. Furthermore, we fabricate perovskite solar cells with a novel back-contact structure, in which electron- and hole-selective electrodes are co-positioned on the back side of the cell and spaced by 100 μm. By utilising grazing-incidence X-ray diffraction, we show that even in the earliest stages of conversion of precursors to perovskite we achieve remarkably high open-circuit voltages, suggesting that the defect tolerance of perovskites appears at an early stage in the conversion process. Moreover, we employ scanning X-ray diffraction with nanofocused beam and obtain detailed information, revealing overlapping grains located at different depths within perovskite films. We find that the critical grain size is the longer-range structural super-grains rather than the grains viewed with conventional microscopy techniques. These findings further highlight the presence of structural defects in perovskite materials and provide important insights towards improving the optoelectronic behaviour of these materials
Degradation Kinetics of Inverted Perovskite Solar Cells.
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devices in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3-xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.M.A. acknowledges the Ministry of Presidential Affairs (UAE) for supporting her doctoral studies. A.J.P. acknowledges support from the EPSRC through the grant EP/M024873/1. J.T.-W.W. acknowledges the EPSRC funding