108 research outputs found

    Investigation of Testosterone, Androstenone, and Estradiol Metabolism in HepG2 Cells and Primary Culture Pig Hepatocytes and Their Effects on 17βHSD7 Gene Expression

    Get PDF
    Steroid metabolism is important in various species. The accumulation of androgen metabolite, androstenone, in pig adipose tissue is negatively associated with pork flavor, odour and makes the meat unfit for human consumption. The 17β-hydroxysteroid dehydrogenase type 7 (17βHSD7) expressed abundantly in porcine liver, and it was previously suggested to be associated with androstenone levels. Understanding the enzymes and metabolic pathways responsible for androstenone as well as other steroids metabolism is important for improving the meat quality. At the same time, metabolism of steroids is known to be species- and tissue-specific. Therefore it is important to investigate between-species variations in the hepatic steroid metabolism and to elucidate the role of 17βHSD7 in this process. Here we used an effective methodological approach, liquid chromatography coupled with mass spectrometry, to investigate species-specific metabolism of androstenone, testosterone and beta-estradiol in HepG2 cell line, and pig cultured hepatocytes. Species- and concentration-depended effect of steroids on 17βHSD7 gene expression was also investigated. It was demonstrated that the investigated steroids can regulate the 17βHSD7 gene expression in HepG2 and primary cultured porcine hepatocytes in a concentration-dependent and species-dependent pattern. Investigation of steroid metabolites demonstrated that androstenone formed a 3′-hydroxy compound 3β-hydroxy-5α-androst-16-ene. Testosterone was metabolized to 4-androstene-3,17-dione. Estrone was found as the metabolite for β-estradiol. Inhibition study with 17βHSD inhibitor apigenin showed that apigenin didn't affect androstenone metabolism. Apigenin at high concentration (50 μM) tends to inhibit testosterone metabolism but this inhibition effect was negligible. Beta-estradiol metabolism was notably inhibited with apigenin at high concentration. The study also established that the level of testosterone and β-estradiol metabolites was markedly increased after co-incubation with high concentration of apigenin. This study established that 17βHSD7 is not the key enzyme responsible for androstenone and testosterone metabolism in porcine liver cells. © 2012 Chen et al

    Purification and Characterization of a Novel Chlorpyrifos Hydrolase from Cladosporium cladosporioides Hu-01

    Get PDF
    Chlorpyrifos is of great environmental concern due to its widespread use in the past several decades and its potential toxic effects on human health. Thus, the degradation study of chlorpyrifos has become increasing important in recent years. A fungus capable of using chlorpyrifos as the sole carbon source was isolated from organophosphate-contaminated soil and characterized as Cladosporium cladosporioides Hu-01 (collection number: CCTCC M 20711). A novel chlorpyrifos hydrolase from cell extract was purified 35.6-fold to apparent homogeneity with 38.5% overall recovery by ammoniumsulfate precipitation, gel filtration chromatography and anion-exchange chromatography. It is a monomeric structure with a molecular mass of 38.3 kDa. The pI value was estimated to be 5.2. The optimal pH and temperature of the purified enzyme were 6.5 and 40°C, respectively. No cofactors were required for the chlorpyrifos-hydrolysis activity. The enzyme was strongly inhibited by Hg2+, Fe3+, DTT, β-mercaptoethanol and SDS, whereas slight inhibitory effects (5–10% inhibition) were observed in the presence of Mn2+, Zn2+, Cu2+, Mg2+, and EDTA. The purified enzyme hydrolyzed various organophosphorus insecticides with P-O and P-S bond. Chlorpyrifos was the preferred substrate. The Km and Vmax values of the enzyme for chlorpyrifos were 6.7974 μM and 2.6473 μmol·min−1, respectively. Both NH2-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometer (MALDI-TOF-MS) identified an amino acid sequence MEPDGELSALTQGANS, which shared no similarity with any reported organophosphate-hydrolyzing enzymes. These results suggested that the purified enzyme was a novel hydrolase and might conceivably be developed to fulfill the practical requirements to enable its use in situ for detoxification of chlorpyrifos. Finally, this is the first described chlorpyrifos hydrolase from fungus

    Riskanalys av system för tågtrafikstyrning

    No full text

    Shall we measure Lmax or Leq of road vehicles

    No full text

    Understanding the effects of “ethnicity” in entrepreneurship from a generational lens: the case of the ethnic Korean in China

    No full text
    Ethnic entrepreneurship research still focuses on the experience of the first generation. However, evidence shows that increasing second and third- generation ethnic entrepreneurs practice entrepreneurship, and they show significant differences compared with first-generation entrepreneurs in many aspects. Therefore, it is necessary to understand how ethnicity affectsentrepreneurship from a historical lens. This paper uses interview and observation data to explore how the external environment shapes ethnicity and further affects ethnic entrepreneurship. Three generations of Korean Chinese entrepreneurs were compared, an we argue that along with the generational shift ethnic resources, such as languages and ethnic networks, are becoming less important. However, the ethnic attributes would start to mix both ethnic’s cultures, which becomes a critical source to building one’s entrepreneurial characteristics

    Study on thermal-mechanical coupling performance and failure mechanism of titanium alloy lattice structures in high temperature environment

    No full text
    Three types of lattice structure unit cell specimens of kagome, single-stage pyramidal and multistage pyramidal were designed and manufactured by using 3D printing technology, out-of-plane compression tests and numerical simulations in the room temperature environments of 25℃ and high temperature of 350℃ were carried out. The analysis clarified the influence of the three design parameters of cell number, structure form and structure level on the out-of-plane load-bearing capacity of the lattice structure, and revealed the thermal-mechanical coupling performance and failure mechanism of the lattice structures. The results show that the carrying capacity of the kagome lattice increases linearly with the number of cells, which verifies the rationality to use single cells instead of multiple cells to carry out related research. Further analysis showed that the failure mode of three lattice structures was all internal core buckling leading to the overall failure of the structure, and the structural level has the most significant impact on the mechanical properties of the lattice. Due to the addition of the secondary core, the multistage pyramidal lattice structure has a larger heat transfer surface area and load-bearing capacity: under the same weight, the internal core heat transfer surface area increased by 131.9% comparing with the single-stage lattice structure, and at 25℃ and 350℃, the ultimate load of single-stage lattice structure increased by 18.4% and 23% respectively. At the same time, due to the increase in heat transfer surface area, the bearing capacity of the multistage lattice unit cell was slightly affected by high temperature than the kagome and single-stage lattice unit cells

    Impacts of Urbanization and Its Parameters on Thermal and Dynamic Fields in Hangzhou: A Sensitivity Study Using the Weather Research and Forecasting Urban Model

    No full text
    The impact of urbanization and the sensitivity of urban canopy parameters (UCPs) on a typical summer rainfall event in Hangzhou, China, is investigated using three groups of ensemble experiments. In this case, urbanization leads to higher temperatures, lower mixing ratios, lower wind speeds before precipitation, and more precipitation in and around the urban area. Both the thermal and dynamical effects of urbanization contribute to an increase in temperature and precipitation, with thermal effects contributing 71.2% and 63.8% to the temperature and precipitation increase, respectively, while the thermal and dynamical impacts cause the opposite changes to the mixing ratio and wind speed. Compared to the other three meteorological elements, the model has the largest uncertainty in the simulation of precipitation, which includes the sensitivity of the different parameterization schemes to the simulation of precipitation in urban areas, and the uncertainty brought by the urban effect on precipitation is not confined within the city but extends to the surrounding areas as well. Temperature and mixing ratio are more sensitive to thermal-related UCPs, while the wind speed is mainly affected by the structural parameters. These variations, however, are sometimes contradictory to precipitation changes, which further adds to the complexity of precipitation simulation

    A Comparison of Different Station Data on Revealing the Characteristics of Extreme Hourly Precipitation Over Complex Terrain: The Case of Zhejiang, China

    No full text
    Abstract Both long‐term but small number of national stations and short‐term but large number of regional stations have been frequently used to study the extreme hourly precipitation (EXHP) in China. However, few studies focus on the differences of the two for revealing the features of EXHP. In this study, the characteristics of EXHP in Zhejiang Province are investigated using three rainfall data sets at three threshold criteria. The comparison between different data sets shows that increasing the station density can better reflect the climatic spatial distribution of EXHP thresholds if long‐term data is absent. The majority of EXHP can be classified into four weather types: the southwesterly wind type (30.7%–48.5%), the trough type (12.2%–23.6%), the tropical cyclone (TC) type (11.4%–17.5%) and the easterly wind type (4.9%–17.9%). The selection of stations is more sensitive to the proportions of the four weather types than the statistical years and threshold criteria. The monthly and diurnal variations of EXHP, as well as their differences revealed by the three data sets, are varied by weather type. Only using national stations cannot distinguish the spatial differences between the TC type and the easterly wind type, and there is an underestimation for southwesterly wind type and trough type in the mountainous area of southwest Zhejiang. The statistical year and station height are the main reasons for the differences in the duration of EXHP events calculated by different data sets, with the TC type having the largest effect and the southwesterly wind type the smallest

    Continuous degradation of phenanthrene in cloud point system by reuse of Sphingomonas polyaromaticivorans cells

    No full text
    Abstract Extractive biodegradation of phenanthrene by Sphingomonas polyaromaticivorans was previously carried out in cloud point system (CPS). In this study, we explored the possibility of further increasing the efficiency of the culture by repeatedly reusing cells and the system for biodegradation. Three different recycling strategies were adopted. In reuse of cells plus CPS, cells were reused for 3 times while maintaining high degradation rates (> 90%). Thereafter, the accumulation of metabolites in the dilute phase resulted in a decrease in cell viability. This inhibition was avoided in recycling the cells plus coacervate phase by replacing the dilute phase with fresh Medium. However, due to the slow adaptation of the cells to the new degradation environment and the reduction in the volume of the coacervate phase, the cells were only reused twice and their activity decreased. However, the same long degradation cycle (5 days) as the reuse of cells plus coacervate phase reduced the overall degradation efficiency of phenanthrene. Finally, a combined strategy of 3 times of cells plus CPS reuse and individual cells reuse once was employed and run for two cycles. 3 rounds of reuse of cells plus CPS improved cells utilization and phenanthrene degradation efficiency. Then, the subsequent round of reuse of cells alone relieved the effect of increasing metabolites on cell viability. This study provides a potential application for reusing cells to continuously degrade phenanthrene in soil and water in CPS

    BdorCSP2 is important for antifeed and oviposition-deterring activities induced by Rhodojaponin-III against Bactrocera dorsalis.

    Get PDF
    Rhodojaponin-III is a nonvolatile botanical grayanoid diterpene compound, which has antifeedant and oviposition deterrence effects against many kinds of insects. However, the molecular mechanism of the chemoreception process remains unknown. In this study, the important role of BdorCSP2 in the recognition of Rhodojaponin-III was identified. The full length cDNA encoding BdorCSP2 was cloned from legs of Bactrocera dorsalis. The results of expression pattern revealed that BdorCSP2 was abundantly expressed in the legs of adult B. dorsalis. Moreover, the expression of BdorCSP2 could be up-regulated by Rhodojaponin-III. In order to gain comprehensive understanding of the recognition process, the binding affinity between BdorCSP2 and Rhodojaponin-III was measured by fluorescence binding assay. Silencing the expression of BdorCSP2 through the ingestion of dsRNA could weaken the effect of oviposition deterrence and antifeedant of Rhodojaponin-III. These results suggested that BdorCSP2 of B. dorsalis could be involved in chemoreception of Rhodojaponin-III and played a critical role in antifeedant and oviposition behaviors induced by Rhodojaponin-III
    corecore