100 research outputs found

    Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta

    Get PDF
    Particles of dust washed off streets by stormwater are an important pathway of polyaromatic hydrocarbons (PAHs) into urban streams. This article presented a comprehensive assessment of the size distribution of PAHs in street dust particles, the potential risks of the particles in urban streams, and the sources and sinks of PAHs in the stream network. This assessment was based on measurements of 16 PAHs from the USEPA priority list in street dust particles and river sediments in Xincheng, China. The content of total PAHs ranged from 1629 to 8986 ÎĽg/kg in street dust particles, where smaller particles have a higher concentrations. Approximately 55% of the total PAHs were associated with particles less than 250 ÎĽm which accounted for 40% of the total mass of street dust. The PAH quantities increased from 2.41 to 46.86 ÎĽg/m2 in the sequence of new residential, rising through main roads, old town residential, commercial and industrial areas. The sediments in stream reaches in town were found to be sinks for street dust particle PAHs. The research findings suggested that particle size, land use and the hydrological conditions in the stream network were the factors which most influenced the total loads of PAH in the receiving water bodies.<br/

    Effectiveness of Oxidation-Reduction Potential and pH as Monitoring and Control Parameters for Nitrogen Removal in Swine Wastewater Treatment by Sequencing Batch Reactors

    Get PDF
    Two bench-scale sequencing batch reactors (SBRs) were operated in a fixed hydraulic retention time study to investigate the effectiveness of oxidation-reduction potential (ORP), pH and dissolved oxygen as parameters for indicating denitrification followed by nitrification in SBRs for swine wastewater treatment. The ORP and pH profiles were monitored and evaluated under different denitrification and nitrification conditions with and without a supplemental carbon source. With a low C/N ratio, and using a suitable C/N ratio adjustment control, ORP and pH could be used as monitoring and control parameters in both the anoxic and oxic phases for practical swine wastewater treatment. High-level accumulation of nitrate was observed without any C/N ratio adjustment. In this case, ORP and pH were not useful for monitoring denitrification followed by nitrification in SBRs. According to our research, with regard to N removal, it would be better to use pH as a parameter during the oxic phase and ORP as a parameter during the anoxic phase. Using a suitable adjustment of a C/N ratio in the influent by adding swine slurry, a high total nitrogen removal efficiency of up to 95.5% was reached. It was found that, in this case, the use of ORP and pH as parameters for real-time control processes was possible in swine wastewater treatment

    Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China

    Get PDF
    Knowledge of natural long-term drought variability is essential for water resource management and planning, especially in arid and sub-arid regions of the world. In the eastern Qilian Mountains of China, long-term drought variability based on high-resolution proxy records such as tree-ring data are still scarce to date. Here we present a new tree-ring chronology from the eastern Qilian Mountains which provides a valuable 1,002-year record (1009–2010 CE) of drought variability. The new reconstruction of June–July 5-month scale standardized precipitation and evapotranspiration index is the first millennium tree-ring estimate of past climate developed in the eastern Qilian Mountains. The record shows that this region has experienced several persistent droughts and pluvials over the past millennium, with significantly drier climate during the fifteenth century and dramatic wetting since the nineteenth century. The low frequency generally agrees with other nearby studies based on both tree-ring data and other proxy data

    Comparative analysis of Root Na+ relation under salinity between Oryza sativa and Oryza coarctata

    Get PDF
    Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+ /H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+ /H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the “futile cycle” at the plasma membrane

    Revealing the role of the calcineurin B-like protein-interacting protein kinase 9 (CIPK9) in rice adaptive responses to salinity, osmotic stress, and K+ deficiency

    Get PDF
    In plants, calcineurin B-like (CBL) proteins and their interacting protein kinases (CIPK) form functional complexes that transduce downstream signals to membrane effectors assisting in their adaptation to adverse environmental conditions. This study addresses the issue of the physiological role of CIPK9 in adaptive responses to salinity, osmotic stress, and K+ deficiency in rice plants. Whole-plant physiological studies revealed that Oscipk9 rice mutant lacks a functional CIPK9 gene and displayed a mildly stronger phenotype, both under saline and osmotic stress conditions. The reported difference was attributed to the ability of Oscipk9 to maintain significantly higher stomatal conductance (thus, a greater carbon gain). Oscipk9 plants contained much less K+ in their tissues, implying the role of CIPK9 in K+ acquisition and homeostasis in rice. Oscipk9 roots also showed hypersensitivity to ROS under conditions of low K+ availability suggesting an important role of H2O2 signalling as a component of plant adaptive responses to a low-K environment. The likely mechanistic basis of above physiological responses is discussed

    Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza

    Get PDF
    Rice (Oryza sativa), a staple crop for a substantial part of the world’s population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars

    Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Major depressive disorder (MDD) is a common mood disorder. Gut microbiota may be involved in the pathogenesis of depression via the microbe–gut–brain axis. Liver is vulnerable to exposure of bacterial products translocated from the gut via the portal vein and may be involved in the axis. In this study, germ-free mice underwent fecal microbiota transplantation from MDD patients and healthy controls. Behavioral tests verified the depression model. Metabolomics using gas chromatography–mass spectrometry, nuclear magnetic resonance, and liquid chromatography–mass spectrometry determined the influence of microbes on liver metabolism. With multivariate statistical analysis, 191 metabolites were distinguishable in MDD mice from control (CON) mice. Compared with CON mice, MDD mice showed lower levels for 106 metabolites and higher levels for 85 metabolites. These metabolites are associated with lipid and energy metabolism and oxidative stress. Combined analyses of significantly changed proteins in livers from another depression model induced by chronic unpredictive mild stress returned a high score for the Lipid Metabolism, Free Radical Scavenging, and Molecule Transports network, and canonical pathways were involved in energy metabolism and tryptophan degradation. The two mouse models of depression suggest that changes in liver metabolism might be involved in the pathogenesis of MDD. Conjoint analyses of fecal, serum, liver, and hippocampal metabolites from fecal microbiota transplantation mice suggested that aminoacyl-tRNA biosynthesis significantly changed and fecal metabolites showed a close relationship with the liver. These findings may help determine the biological mechanisms of depression and provide evidence about “depression microbes” impacting on liver metabolism
    • …
    corecore