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1  Introduction

Global mean surface temperatures have risen by 
0.85 ± 0.20 °C, over the period 1880–2012, and projections 
of future climate change suggest further global warming 
(IPCC 2013). Warming of the global climate is expected 
to be accompanied by increase of global precipitation, as 
warmer air is able to hold more water vapour (Wentz et al. 
2007). However, precipitation changes are expected to dif-
fer from region to region: precipitation is likely to increase 
at high latitudes, the equatorial Pacific Ocean and many 
mid-latitude wet regions, and decrease in many already dry 
mid-latitude and subtropical regions (IPCC 2013).

In the arid northwest China, Shi et al. (2007) found that 
the region has become wetter in the last several decades. 
However, the data they used are typically limited in length, 
which hampers our understanding of the trend of long-term 
hydroclimatic variability in this region, and how this vari-
ability may be changing in a warming world. Therefore, 
long-term hydroclimatic variability derived from high-
resolution paleoclimatic proxy data, like tree rings, lake 
deposits, ice cores and historical documents, are invaluable. 
Among these, annually resolved and precisely-dated tree-
ring data are most commonly used. Tree-ring based hydro-
climate reconstructions have been developed for numer-
ous sites around the globe (Cook et al. 2010). However, in 
the eastern Qilian Mountains, the tree-ring chronologies 
reported so far are mostly based on Qinghai spruce (Picea 
crassifolia Kom.) and span less than two centuries (Deng 
et  al. 2013), which are barely sufficient to study the pat-
terns of climate variability at multi-decadal and centennial 
timescales. Luckily, Qilian juniper (Juniperus przewalskii 
Kom.) is also found in this region. Qilian juniper is one of 
the most successful tree species for dendroclimatology in 
northwestern China, and had been used to reconstruct the 
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climate variations for the last millennium or even longer 
(Zhang et al. 2003; Liu et al. 2005, 2006; Shao et al. 2005, 
2010; Gou et al. 2010; Yang et al. 2014).

Here we report a new tree-ring chronology of Qilian 
juniper, which is robust back to 1009 CE, and is currently 
the longest tree ring chronology develop for the eastern 
Qilian Mountains. This chronology documents variations 
of drought severity in the eastern Qilian Mountains over 
the last millennium. Such long-term records are essential 
to understanding natural climate variability and validating 
climate prediction models.

2 � Data and methods

2.1 � Study area and tree‑ring data

The sampling sites are situated in the Langya valley in the 
eastern part of the Qilian Mountains, which is currently 
near the northern limit of the Asian summer monsoon 
(Fig. 1). The dominant tree species in this area are Qinghai 
spruce (P. crassifolia Kom.) on the wetter, shaded slopes, 
and Qilian juniper (J. przewalskii Kom.) on the drier, sun-
nier slopes. Ring-width cores were taken from living trees 
at breast height (1.3 m) by increment borer from two Qilian 
juniper (J. przewalskii Kom.) sites (LYA (37.95N, 101.24E, 
3,210–3,265 m a.s.l.) and LYB (37.97N, 101.26E, 3,164–
3,220 m a.s.l.,), about 3 km apart. One to four cores were 
sampled from each tree from different directions. In total, 
179 cores from 100 trees were collected (58 cores from 33 
trees at LYA, and 121 cores from 67 trees at LYB) (Fig. 1). 

These two sites share similar slope (~60°), aspect (south-
facing), soil condition (shallow soil) and elevation, so we 
combined all samples from these sites in the subsequent 
analysis.

Samples were processed using standard dendrochrono-
logical techniques (Stokes and Smiley 1968). Increment 
cores were air dried and glued onto wooden mounts with 
transverse axis up. Once dry, all cores were progressively 
polished with finer sandpapers to reveal the cellular struc-
ture of the wood. Each core was crossdated, each tree 
ring assigned the exact calendar in which it was formed. 
All tree-ring widths were then measured to an accuracy of 
0.001  mm using a Velmex measuring system. The com-
puter program COFECHA was used to ensure the accuracy 
of both crossdating and measurements (Holmes 1983). 
Cores that were too short or yielded ambiguous results 
were excluded from further analysis, and 144 cores from 77 
trees were used to establish the chronology.

To remove or reduce non-climatic influences, measured 
ring-width series were detrended with negative exponen-
tial curves or straight lines, using the signal free detrend-
ing method (Melvin and Briffa 2008; Cook et  al. 2013). 
The individual index series were then combined into 
a single chronology by calculating a bi-weight robust 
means chronology (Cook and Kairiukstis 1990). In order 
to account for changes in variance associated with varying 
sample depth through time, the variance in the chronology 
was stabilized using a method introduced by Osborn et al. 
(1997) and further developed by Frank et al. (2007). The 
stabilized signal-free chronology was used in the subse-
quent reconstruction.

Fig. 1   Map of the study region, 
showing the locations of the 
tree-ring sites and nearby mete-
orological stations. The modern 
Asian summer monsoon limit is 
shown by the dashed thick line 
(after Chen et al. 2008)
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Chronology quality was interpreted using the expressed 
population signal (EPS) statistic; an EPS greater than 0.85 
is generally considered to be an acceptable threshold for a 
reliable chronology (Cook and Kairiukstis 1990). In this 
study, running EPS and RBAR were calculated using a 
51-year window that lags by 1 year. Though the chronol-
ogy extends to 935 CE, the EPS does not exceed the sug-
gested minimum threshold of 0.85 until 1009 CE, when the 
sample size reaches six cores (four trees). Therefore, we 
conclude that the reliable portion spans from 1009 to 2010 
CE (Fig. 2). The mean and median segment lengths are 400 
and 344 years, an indication of the ability of this record to 
reflect low-frequency variability on these time scales (Cook 
et al. 1995).

2.2 � Climate data

The nearby weather stations to the sampling sites are 
Yongchang (38°14′E, 101°58′N, 1,976.9  m a.s.l., 1958–
2010), Menyuan (37°23′E, 101°37′N, 2,850.0  m a.s.l., 
1956–2010) and Qilian (38°11′E, 100°15′N, 2,787.4  m 
a.s.l., 1956–2010), which are about 70, 71 and 91  km 
away from the sampling sites, respectively. Considering 
the large difference in the elevation between the sam-
pling sites and Yongchang station, we only used the data 
from the other two stations. Mean annual temperatures 
(precipitation) at Menyuan and Qilian are approximately 
0.8  °C (525.7 mm) and 1.0  °C (403.7 mm), respectively 
(Fig.  3).  Monthly temperature and precipitation show 
pronounced seasonality. The warmest temperatures occur 
in July and the coldest in January, and the monthly total 
precipitation peaks in August or July, with approximately 
83.4 or 90.0  % occurring between May and September 

during the warm season. We applied the method of Jones 
and Hulme (1996) to develop regional series of monthly 
temperatures and precipitation, by using the monthly 
climate data from Menyuan and Qilian meteorological 
stations.

Fig. 2   Langya tree-ring 
width chronology. Sample 
size, RBAR, and EPS for the 
chronology are also shown. 
RBAR and EPS are computed 
using 51-year windows, lagged 
1 year. The reliable portion of 
the chronology is determined by 
the EPS value >0.85

Fig. 3   Average monthly precipitation (upper) and temperature (bot-
tom) from the Menyuan (1956–2010) and Qilian (1956–2010) mete-
orological stations
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Standardized precipitation and evapotranspiration indi-
ces (SPEI) (Vicente-Serrano et  al. 2010) were also com-
puted using the monthly regional climate series. The SPEI is 
designed to take into account both precipitation and poten-
tial evapotranspiration (PET) in determining drought. The 
SPEI can be calculated on a range of timescales by calcu-
lating the accumulated climatic water balance (difference 
between precipitation and PET) of the current month and a 
varying number of previous months. For example, to obtain 
the 6-month SPEI, the climatic water balance accumulated 
over the 5 months before to the current month enter into the 
calculation. Therefore, unlike many other drought indices, 
the SPEI is a multiscalar drought index. In this study, we 
calculated SPEI on timescales ranging from 1 to 12 months.

For the SPEI calculations, the algorithm developed by 
Vicente-Serrano et  al. (2010) was used. The PET is cal-
culated using the Modified-Hargreaves method by includ-
ing precipitation data, which had been proven to improve 
the PET estimates significantly for arid regions (Droogers 
and Allen 2002). The SPEI were calculated using R (R 
Core Team 2014) with the R package ‘SPEI’ (Beguería and 
Vicente-Serrano 2013).

To investigate tree growth/climate relationships, regional 
series of monthly temperatures, precipitation and SPEI 
were used.

2.3 � Statistical methods

Correlation analysis was used to identify relationships 
between tree-ring widths and climatic factors. The corre-
lations were calculated on a ‘dendroclimatic year’ (Fritts 
1976) that begins in May of the previous growing season 
and ends in August of the current growing season. Because 
seasonally averaged climate indices may be more repre-
sentative of tree growth than that of just one single month 
(Cook et  al. 1999), various seasonal variables were con-
structed by averaging monthly values. The correlation coef-
ficients of both the monthly and seasonally averaged cli-
mate indices were computed.

The reconstruction is derived from linear regression of 
the tree-ring chronology against the target climate data. 
The regression model was validated with a split calibration-
verification procedure to test the quality and stability of the 
calibration models (Cook and Kairiukstis 1990). Several 
statistical measures were employed to evaluate the calibra-
tion models’ stability, including Pearson’s correlation coef-
ficient (r), explained variance (R2), adjustment explained 
variance (R2

adj), F value, sign test (ST), first difference sign 
test (ST1), the reduction of error (RE) and the coefficient 
of efficiency (CE). When the RE and CE exceeds zero, 
the calibration model shows greater skill than the mean of 
the instrumental data from the calibration or verification 
period, respectively.

Like Davi et al. (2013), the magnitude and intensity of 
each drought and pluvial event were also computed. Mag-
nitude is calculated as the cumulative departure from the 
long-term mean for each event, and intensity is calculated 
as the mean cumulative departure for each event.

3 � Results

3.1 � Climate response

Correlation analyses between the tree-ring chronology and 
the climatic data show that precipitation of current May 
(p < 0.01) and June (p < 0.01) are significantly and positively 

Fig. 4   Correlations of tree-ring index with monthly total rainfall and 
mean monthly temperature from May of the previous year to August 
of the current year. Short dashed and long dashed horizontal lines 
indicate the p = 0.05 and p = 0.01 significance levels, respectively

Fig. 5   Correlations of tree-ring index with monthly SPEI at different 
time scales. The grids with crosses indicate that the correlation is sta-
tistically significant (p = 0.05)
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correlated with the ring-width indices (Fig. 4). The negative 
correlations between the ring-width indices and temperature 
of previous August and current May are also statistically sig-
nificant (p < 0.05). Correlations are improved with SPEI data, 
especially at the timescales of three to six months. As shown 
in Fig.  5, the correlation coefficients between tree growth 
and SPEI at the timescales of 3–6 months are above 0.6 for 
June and July. For the seasonally averaged climate indices, 
the highest correlation was found between tree rings and the 
seasonalized 5-month scale SPEI in June–July (r =  0.704). 
Therefore, the June–July 5-month scale SPEI was identified 
as the most appropriate predictand for the reconstruction. 

3.2 � Calibration and verification of the reconstruction 
model

On the basis of the above analyses, a linear regression 
model was employed to reconstruct the history of June–
July 5-month scale SPEI variations since 1009 CE in the 
eastern part of the Qilian Mountains. The reconstruction 
model based on the entire instrumental period for year t is

where SPEI56–7 is the June–July 5-month scale SPEI and 
I is tree-ring index for a given year. The model explained 

SPEI56−7 = 2.640 × I−3.725

49.6  % of the variance in the SPEI data (48.6  % after 
adjustment for loss of degrees of freedom) for the period 
from 1957 to 2010.

Figure  6 is a comparison of the reconstructed and 
observed SPEI during the common period and it indicates a 
generally good model fit. The instrumental dataset was split 
into two periods (1957–1983 and 1984–2010) to test the 
quality and stability of the calibration models (Fritts 1976; 
Cook and Kairiukstis 1990). The F value, r, ST and ST1 are 
all statistically significant, and RE and CE are both positive 
(Table 1), indicating that the regression model has been sta-
tistically validated.

3.3 � Reconstructed drought variation

The reconstructed June–July SPEI is plotted in Fig. 7. The 
mean SPEI for the full reconstruction was −1.085, and 
the standard deviation σ was 0.848. We defined wet or dry 
years as when the SPEI was greater or less than 1 SD from 
the mean, respectively. The full reconstruction contained 
158 dry and 163 wet years, each accounting for about 16 % 
of the total years (Table 2). The distribution of the drought 
years in each century is not equal. Dry years were more fre-
quent in the fifteenth and seventeenth century, when 36 and 
31 dry years are estimated to have occurred, respectively. 
Interestingly, the twentieth century had only 3 drought 
years. This feature is even more obvious for the wet years. 
More than a half of the wet years were clustered in the six-
teenth (with 41 wet years) and the twentieth (with 43 wet 
years) centuries. In contrast, the fifteenth century did not 
have any wet years, and the seventeenth, eighteenth and 
nineteenth centuries had only two wet years in each. Many 
drought and wet extremes occurred in successive years. The 
longest period of consecutive drought years was 9  years 
(1638–1646), with 5  years in 1465–1469 and 1478–1482 
in second place. The longest pluvial event spanned 12 years 
(1983–1994) and the second longest pluvial lasted 9 years 
(1530–1538).

The reconstructed drought series shows strong decadal 
to centennial scale variability. To emphasize the low-fre-
quency variations of sustained droughts and pluvial periods, 

Fig. 6   Plots of observed (solid line) and estimated (dash line) June–
July 5-month scale SPEI for the common period from 1957 to 2010

Table 1   Calibration and verification statistics for the reconstruction models

R2   is the explained variance; R2
adj is the explained variance after adjustment for loss of degrees of freedom; r is the Pearson’s correlation coef-

ficient; ST is the sign test; ST1 is the first difference sign test; RE is the reduction of error; CE is the coefficient of efficiency. F value, Pearson’s 
correlation coefficient and sign test are significant at or above 0.05 level

Calibration Verification

Period R2 R2
adj F value Period r ST ST1 RE CE

1957–1983 0.424 0.401 18.43 1984–2010 0.746 24+ 3− 19+ 7− 0.562 0.464

1984–2010 0.557 0.539 31.39 1957–1983 0.651 19+ 8− 21+ 5− 0.450 0.329

1957–2010 0.496 0.486 51.15
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a 50-year low-pass filter was applied over the entire recon-
struction to highlight multi-decadal to centennial variation. 
Several persistent (lasting more than 10  years) droughts 
with SPEI values below the long-term mean were identi-
fied: 1042–1071, 1118–1185, 1266–1353, 1401–1508, 
1602–1671, 1680–1742, 1755–1842 and 1858–1892. Sev-
eral persistent pluvials occurred in 1013–1041, 1072–1117, 
1186–1265, 1354–1400, 1509–1601, 1743–1754, 1843–
1857, and since 1894 (Fig. 7; Table 3).

4 � Discussion

4.1 � Climate response

The significant correlations between the tree-ring index and 
monthly precipitation are all positive, which means that the 
growth of Qilian Juniper in the studied area depends pri-
marily on the moisture conditions. Because the study area 
is in the semi-arid region and sampling sites are located on 

steep hillsides, the annual precipitation is low and the lim-
ited amount of water storage in the soil can hardly meet the 
trees’ demand. Therefore, moisture is the main limiting fac-
tor for trees growing in this area. As expected, the signifi-
cant correlations between the tree-ring index and tempera-
ture in current May is negative, because higher temperature 
would likely have enhanced potential evapotranspiration, 
decreased the moisture content of the soil, and thus limited 
tree growth. The negative correlation with previous August 
temperature is also significant, suggesting that some carbo-
hydrates produced at the end of the previous growing sea-
son may have been incorporated into the current year’s ring 
and poor conditions for photosynthesis at this time may 
have affected the production of carbohydrates.

The correlation coefficients between the tree-ring chro-
nology and growing season SPEI also imply that the radial 
growth rate of Qilian juniper (J. przewalskii Kom.) in this 
area was constrained by water availability. The correlation 
coefficients with SPEI are higher than that with precipita-
tion or temperature, indicating that the SPEI is a better 
indicator of the moisture than simply precipitation, as it 
considers both precipitation and temperature through evapo-
transpiration demand. The highest of correlations (r > 0.6) 
between the tree-ring chronology and the SPEI at different 
time scales were recorded at relatively short-time scales 
(from 2 to 6 months), which indicates that the tree growth in 
this area tends to respond to drought on a short time-scale.

Other dendroclimatic studies of ring width from the 
eastern Qilian Mountains indicate moisture sensitivity 
in other tree species. Drought response was also found in 

Fig. 7   Tree-ring-based SPEI reconstructions of the Eastern Qilian 
Mountains from 1009 to 2010, along with mean (the thick dashed 
line). To emphasize low-frequency variation the drought reconstruc-
tion was smoothed using a 50-year low-pass filter

Table 2   Droughts and pluvial in the last millennium

Period Drought Pluvial

1009–1099 CE 8 15

12th century 15 8

13th century 13 28

14th century 10 15

15th century 36 0

16th century 6 41

17th century 31 2

18th century 21 2

19th century 15 2

20th century 3 43

2000–2010 CE 0 7

Table 3   The long-term droughts and pluvial in the last millennium

Magnitude portrays the cumulative severity of each event while the 
intensity indicates the average severity of each event

Year Duration Magnitude Intensity

1042–1071 30 −6.716 −0.224

1118–1185 68 −7.472 −0.110

1266–1353 88 −21.572 −0.245

1401–1508 108 −63.759 −0.590

1602–1671 70 −39.345 −0.562

1680–1742 63 −31.457 −0.499

1755–1842 88 −32.870 −0.374

1858–1892 35 −10.144 −0.290

1013–1041 29 4.053 0.140

1072–1117 46 19.887 0.432

1186–1265 80 32.377 0.405

1354–1400 47 19.952 0.425

1509–1601 93 54.374 0.585

1743–1754 12 0.425 0.035

1843–1857 15 0.995 0.066

1893–2010 118 81.252 0.689
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Qinghai spruce (P. crassifolia) in the eastern Qilian Moun-
tains (Deng et al. 2013; Gao et al. 2013), and Picea wilsonii 
in the Xinglong Mountain (Fang et al. 2009).

4.2 � Comparison with other hydroclimate reconstructions

To validate our reconstruction, we compared our series 
with five other hydroclimate reconstructions of northeast-
ern Tibetan Plateau from both tree-ring data and other 
proxy data (Fig.  8). These series used for comparison 
include the precipitation reconstructions for the northeast-
ern Tibetan Plateau (Yang et al. 2014) (Fig. 8b), the near-
est grid in (Cook et  al. 2010)’s monsoon Asian drought 
reconstruction dataset (Fig.  8c), precipitation reconstruc-
tion derived from the speleothem δ18O from the Wangxiang 
Cave (Zhang et  al. 2008) (Fig. 8d), groundwater recharge 
rate in the Badain Jaran Desert (Gates et al. 2008) (Fig. 8e), 
and the Longxi precipitation reconstruction based on his-
torical documentary records (Tan et al. 2008) (Fig. 8f).

The eleventh to the middle of the thirteenth century was 
generally wet, with only two slight droughts at 1042–1071 
and 1118–1185 in our new reconstruction. This is consist-
ent with the precipitation reconstructions for the north-
eastern Tibetan Plateau (Yang et  al. 2014), the historical 
documentary reconstruction of Longxi precipitation (Tan 
et al. 2008), and low salinity in Qinghai Lake (Zhang et al. 
2004). During this time, the Asian summer monsoon may 
have been enhanced as suggested by the speleothem δ18O 
from the Wangxiang Cave (Zhang et al. 2008).

The persistent drought in the fifteenth century (1400–
1508) was the deepest and most profound drought in the 
last millennium (Table  3), including two 5-year droughts 
(1465–1469 and 1478–1482) and 39 dry years in all. This 
long drought period is widely reported in many tree-ring 
width based drought or precipitation reconstructions in 
northeastern Tibetan Plateau  (Gou et  al.  2014), including 
the source of the Yellow river (Gou et al. 2010), the Qaidam 
Basin (Zhang et al. 2003; Sheppard et al. 2004; Shao et al. 
2005; Liu et  al. 2006; Yang et  al. 2014), the middle and 
west Qilian mountains (Yang et al. 2011a, b; Zhang et al. 
2011; Sun and Liu 2012), and the nearest PDSI grid in 
(Cook et al. 2010)’s monsoon Asian drought reconstruction 
dataset. It is also recorded in various other paleoclimatic 
archives, and obvious in a tree-ring oxygen isotope based 
precipitation reconstruction from the Qaidam Basin (Wang 
et al. 2013). This dry period is also consistent with drought 
in Longxi (Tan et  al. 2008), lower diffuse groundwater 
recharge rate in the Badain Jaran Desert (Gates et al. 2008), 
increased salinity in Qinghai Lake (Zhang et al. 2004), and 
lower total organic carbon in Kusai Lake (Liu et al. 2009). 
This drought was not limited to the northeastern Tibet Pla-
teau and nearby areas. Many studies of southwest Asia 
(Anderson et  al. 2002), northern Pakistan (Treydte et  al. 
2006) and India (Yadav 2010) also recorded this extended 
drought in the fifteenth century.

After the severe large-scale dry conditions in the fif-
teenth century, a sharp increase in moisture occurred. This 
prolonged pluvial persisted until the beginning of the sev-
enteenth century, and has also been recorded in the nearest 
grid in MADA (Cook et al. 2010), the northeastern Tibetan 
Plateau (Yang et  al. 2014), Badain Jaran Desert (Gates 
et al. 2008) and Longxi (Tan et al. 2008).

Almost three entire centuries, from early seventeenth 
century to the end of the nineteenth century, were character-
ized as persistent drought. It was separated into four multi-
decadal droughts by three short-term humid periods (1672–
1679, 1743–1754 and 1843–1857), which were only slightly 
higher than average. The first two drought periods of the 
four are very outstanding in the entire reconstruction. The 
1602–1671 CE drought, including the longest period of con-
secutive drought years (1638–1646), was also widespread in 
northwest China. This seventeenth century drought is also 

Fig. 8   Comparisons among Eastern Qilian Mountains drought sever-
ity reconstruction (a), the precipitation reconstruction in the north-
eastern of the Tibetan Plateau (Yang et  al. 2014) (b), the nearest 
grid in (Cook et  al. 2010)’s monsoon Asian drought reconstruction 
dataset (c), precipitation reconstruction derived from the speleothem 
δ18O from the Wangxiang Cave (Zhang et  al. 2008) (d), groundwa-
ter recharge rate in the Badain Jaran Desert (Gates et  al. 2008) (e), 
and historical documents records based Longxi precipitation recon-
struction (Tan et al. 2008) (f). The curves in a–d are smoothed using 
a 100-year low-pass filter, and the f is smoothed using a 5-point run-
ning average
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consistent with the low diffuse groundwater recharge rate in 
the Badain Jaran Desert (Gates et al. 2008) and high salinity 
in Qinghai Lake (Zhang et  al. 2004). The negative impact 
of this severe drought has been proposed as one of the pos-
sible contributing factors to the decline of the Ming Dynasty 
(Zhang et  al. 2008). The 1681–1740 CE drought was also 
reported in tree-ring width or oxygen isotope reconstructed 
precipitation in the Qaidam Basin (Zhang et al. 2003; Shep-
pard et al. 2004; Shao et al. 2005; Wang et al. 2013), and 
streamflow reconstructions for the Kherlen River (Davi 
et al. 2013), the Yeruu River (Pederson et al. 2013) and the 
Selenge River (Davi et al. 2006) in Mongolia.

Since 1894, a persistent positive trend in moisture has 
been recorded until present day. Wet conditions in the 
twentieth century were recorded in many other tree-ring 
based studies in the nearby regions, e.g., the middle Qilian 
Mountains (Yang et al. 2011b), the Qaidam Basin (Zhang 
et al. 2003; Sheppard et al. 2004; Liu et al. 2006; Shao et al. 
2010; Yang et al. 2014), central eastern Tibet (Bräuning and 
Mantwill 2004), the Tienshan area (Li et al. 2006) and in 
western and northern Mongolia (Davi et al. 2009; Pederson 
et  al. 2013). Ice core records from the Guliya and Dunde 
in northern Tibetan Plateau and Puruogangri in central 
Tibetan Plateau all show a wetting trend in the last century 
(Yao et al. 2008). Based on historical documents, Tan et al. 
(2008) also show an increasing trend in Longxi precipi-
tation over the last century. A 700-year history of diffuse 
groundwater recharge in the Badain Jaran Desert also sug-
gests the latter half of the twentieth century was wet (Gates 
et al. 2008). During this time, the Asian summer monsoon 
was more powerful as suggested by lower δ18O values from 
stalagmites (Wang et al. 2005; Zhang et al. 2008).

These new reconstructions of droughts and pluvials for 
the eastern Qilian Mountains for the past millennium are 
generally consistent with the previous hydroclimate recon-
structions at the low frequency. However, there are also 
some inconsistencies among these records. For example, 
most of the series indicate that the climatic conditions 
have been relatively wet in the twentieth century, while 
the summer PDSI reconstruction derived from Cook et al. 
(2010) shows a drying trend. To explain the discrepan-
cies, we plotted the tree-ring chronologies in the vicin-
ity of our study area that have been used by Cook et  al. 
(2010), and computed the correlation coefficients between 
the tree-ring chronologies located in the extent of the PDSI 
grid we used for comparison and the reconstructed PDSI 
during the calibration period (1951–1989). As shown in 
Fig. 9, there are only two tree-ring chronologies located in 
the extent of the PDSI grid that we used for comparison, 
and the correlations are not statistically significant at the 
95 % level for the PDSI gird we used for comparison dur-
ing the calibration period. The searching radii used in the 
study is pretty large (500, 1,000, 2,000, and 3000 km) for 

the tree-ring chronologies selecting, some remote tree-ring 
chronologies may have been used to reconstruct the PDSI 
at some grids. On the other side, due to sparse observation 
stations and large variation of the landform in this remote 
area the PDSI index of the research area is not very accu-
rate either, which may also lead to low correlation between 
the tree ring chronologies and PDSI in Cook’s research. 
The very good agreement in the low frequency between 
the regional hydroclimate reconstructions and Cook et  al. 
(2010)’s before the twentieth century indicate that, even 
for the regions without enough highly correlated local tree-
ring chronologies, Cook et al. (2010)’s still contains valu-
able information although some remote chronologies have 
been used. In conclusion, we think the discrepancies may 
be caused by the limited number of significantly correlated 
local tree-ring chronologies. This inconsistency suggests 
that further research effort to expand the tree-ring network 
is needed to update that kind of reconstruction.

5 � Conclusion

A millennium-long tree-ring width chronology was devel-
oped in the eastern Qilian Mountains. Tree growth in this 
region was negatively and significantly correlated with 
May temperature and positively and significantly correlated 
with precipitation of May and June of the current year. The 

Fig. 9   Distribution of the tree-ring chronologies (red dots) near the 
study area used by Cook et al. (2010), and the correlations between 
the two nearby chronologies and the reconstructed PDSI (green 
square) by Cook et  al. (2010) during the calibration period (1951–
1989). The upper (lower) number is the correlation coefficient 
between the PDSI grid and GHEGAN (YINBPS). The sampling sites 
(black dots) in our study and the nearest PDSI grid (black square) to 
them are also labeled. The gray shadow square represent the extent of 
the nearest PDSI grid
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tree-growth is also significantly correlated with SPEI in 
June and July, especially at short time scales. A reconstruc-
tion of June–July 5-month scale SPEI for the eastern Qilian 
Mountains was developed back to 1009 CE, using a linear 
regression model and the reliable portion of the chronology. 
The eastern Qilian Mountains experienced several decadal 
scale droughts and pluvials over the last millennium, with a 
pronounced drought period during the fifteenth century and 
a significant and persistent wetting trend since late nine-
teenth century. The droughts and pluvials identified in our 
reconstruction are consistent with other studies nearby.
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