6,745 research outputs found
Quantum Limits of Measurements Induced by Multiplicative Conservation Laws: Extension of the Wigner-Araki-Yanase Theorem
The Wigner-Araki-Yanase (WAY) theorem shows that additive conservation laws
limit the accuracy of measurements. Recently, various quantitative expressions
have been found for quantum limits on measurements induced by additive
conservation laws, and have been applied to the study of fundamental limits on
quantum information processing. Here, we investigate generalizations of the WAY
theorem to multiplicative conservation laws. The WAY theorem is extended to
show that an observable not commuting with the modulus of, or equivalently the
square of, a multiplicatively conserved quantity cannot be precisely measured.
We also obtain a lower bound for the mean-square noise of a measurement in the
presence of a multiplicatively conserved quantity. To overcome this noise it is
necessary to make large the coefficient of variation (the so-called relative
fluctuation), instead of the variance as is the case for additive conservation
laws, of the conserved quantity in the apparatus.Comment: 8 pages, REVTEX; typo added, to appear in PR
- …