5,839 research outputs found

    Structures in the microwave background radiation

    Full text link
    We compare the actual WMAP maps with artificial, purely statistical maps of the same harmonic content to argue that there are, with confidence level 99.7 %, ring-type structures in the observed cosmic microwave background.Comment: 4 pages, 2 figure

    Alternative experimental evidence for chiral restoration in excited baryons

    Full text link
    Given existing empirical spectral patterns of excited hadrons it has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature/density (effective symmetry restoration). If correct, this implies that mass generation mechanisms and physics in excited hadrons is very different as compared to the lowest states. One needs an alternative and independent experimental information to confirm this conjecture. Using very general chiral symmetry arguments it is shown that strict chiral restoration in a given excited nucleon forbids its decay into the N \pi channel. Hence those excited nucleons which are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only "weakly" decay into the N \pi channel, (f_{N^*N\pi}/f_{NN\pi})^2 << 1. However, those baryons which have no chiral partner must decay strongly with a decay constant comparable with f_{NN\pi}. Decay constants can be extracted from the existing decay widths and branching ratios. It turnes out that for all those well established excited nucleons which can be classified into chiral doublets N_+(1440) - N_-(1535), N_+(1710) - N_-(1650), N_+(1720) - N_-(1700), N_+(1680) - N_-(1675), N_+(2220) - N_-(2250), N_+(?) - N_-(2190), N_+(?) - N_-(2600), the ratio is (f_{N^*N\pi}/f_{NN\pi})^2 ~ 0.1 or much smaller for the high-spin states. In contrast, the only well established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the N\pi channel that is comparable with f_{NN\pi}. This gives an independent experimental verification of the chiral symmetry restoration scenario.Comment: 4 pp. A new footnote with an alternative proof of impossibility of parity doublet decay into pi + N is added. To appear in Phys. Rev. Let

    The use of computer-generated color graphic images for transient thermal analysis

    Get PDF
    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed

    Isospin breaking in the pion-nucleon scattering lengths

    Get PDF
    We analyze isospin breaking through quark mass differences and virtual photons in the pion-nucleon scattering lengths in all physical channels in the framework of covariant baryon chiral perturbation theory (C) 2009 Elsevier B.V. All rights reserved

    Multi-Magnon Scattering in the Ferromagnetic XXX-Model with Inhomogeneities

    Full text link
    We determine the transition amplitude for multi-magnon scattering induced through an inhomogeneous distribution of the coupling constant in the ferromagnetic XXX-model. The two and three particle amplitudes are explicitely calculated at small momenta. This suggests a rather plausible conjecture also for a formula of the general n-particle amplitude.Comment: 21 pages, latex, no figure

    The Nucleon Anapole Moment and Parity-Violating ep Scattering

    Get PDF
    Parity-violating (PV) interactions among quarks in the nucleon induce a PV γNN\gamma NN coupling, or anapole moment (AM). We compute electroweak gauge-independent contributions to the AM through {\cal O}(1/\lamchis) in chiral perturbation theory. We estimate short-distance PV effects using resonance saturation. The AM contributions to PV electron-proton scattering slightly enhance the axial vector radiative corrections, R_A^p, over the scale implied by the Standard Model when weak quark-quark interactions are neglected. We estimate the theoretical uncertainty associated with the AM contributions to R_A^p to be large, and discuss the implications for the interpretation PV of ep scattering.Comment: RevTex 29 pages + 8 PS figures, references and discussions added, to appear in Phys. Rev.

    The Medio Creek Site (41BX1421): National Register Test Excavations, Bexar County Texas

    Get PDF
    During April 2001, the Center for Archaeological Research of The University of Texas at San Antonio conducted National Register of Historic Places eligibility testing for archeological site 41BX1421, located in southwest Bexar County, Texas, under contract with the Texas Department of Transportation. The investigations were conducted under Texas Antiquities Permit Number 2569. The Phase II testing fieldwork consisted of excavation of five test units across the site to investigate cultural deposits encountered during the previous survey phase. A single sheet midden consisting of burned limestone cobbles was encountered across the majority of the site. In concert with the archeological field investigations, the following special analyses and studies were performed to aid the determination of site integrity and eligibility: radiocarbon, lithic, aboriginal ceramic, vertebrate faunal. and magnetic sediment susceptibility. The synthesis of these analyses has provided adequate data to determine 41BX1421 ineligible for the National Register of Historic Places. It is therefore recommended that the Loop 1604 improvements proceed without further cultural resources investigations

    High-pressure spin shifts in the pseudogap regime of superconducting YBa2Cu4O8 as revealed by 17O NMR

    Full text link
    A new NMR anvil cell design is used for measuring the influence of high pressure on the electronic properties of the high-temperature superconductor YBa2_2Cu4_4O8_8 above the superconducting transition temperature TcT_{\rm c}. It is found that pressure increases the spin shift at all temperatures in such a way that the pseudo-gap feature has almost disappeared at 63 kbar. This change of the temperature dependent spin susceptibility can be explained by a pressure induced proportional decrease (factor of two) of a temperature dependent component, and an increase (factor of 9) of a temperature independent component, contrary to the effects of increasing doping. The results demonstrate that one can use anvil cell NMR to investigate the tuning of the electronic properties of correlated electronic materials with pressure.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev.
    • …
    corecore