23 research outputs found
Recommended from our members
Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes.
Rationale: Genome-wide association studies have identified genetic loci associated with insulin resistance (IR) but pinpointing the causal genes of a risk locus has been challenging. Objective: To identify candidate causal genes for IR, we screened regional and biologically plausible genes (16 in total) near the top 10 IR-loci in risk-relevant cell types, namely preadipocytes and adipocytes. Methods and Results: We generated 16 human Simpson-Golabi-Behmel syndrome preadipocyte knockout lines each with a single IR-gene knocked out by lentivirus-mediated CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. We evaluated each gene knockout by screening IR-relevant phenotypes in the 3 insulin-sensitizing mechanisms, including adipogenesis, lipid metabolism, and insulin signaling. We performed genetic analyses using data on the genotype-tissue expression portal expression quantitative trait loci database and accelerating medicines partnership type 2 diabetes mellitus Knowledge Portal to evaluate whether candidate genes prioritized by our in vitro studies were expression quantitative trait loci genes in human subcutaneous adipose tissue, and whether expression of these genes is associated with risk of IR, type 2 diabetes mellitus, and cardiovascular diseases. We further validated the functions of 3 new adipose IR genes by overexpression-based phenotypic rescue in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines. Twelve genes, PPARG, IRS-1, FST, PEPD, PDGFC, MAP3K1, GRB14, ARL15, ANKRD55, RSPO3, COBLL1, and LYPLAL1, showed diverse phenotypes in the 3 insulin-sensitizing mechanisms, and the first 7 of these genes could affect all the 3 mechanisms. Five out of 6 expression quantitative trait loci genes are among the top candidate causal genes and the abnormal expression levels of these genes (IRS-1, GRB14, FST, PEPD, and PDGFC) in human subcutaneous adipose tissue could be associated with increased risk of IR, type 2 diabetes mellitus, and cardiovascular disease. Phenotypic rescue by overexpression of the candidate causal genes (FST, PEPD, and PDGFC) in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines confirmed their function in adipose IR. Conclusions: Twelve genes showed diverse phenotypes indicating differential roles in insulin sensitization, suggesting mechanisms bridging the association of their genomic loci with IR. We prioritized PPARG, IRS-1, GRB14, MAP3K1, FST, PEPD, and PDGFC as top candidate genes. Our work points to novel roles for FST, PEPD, and PDGFC in adipose tissue, with consequences for cardiometabolic diseases
A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface
HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L. Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal–fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation
A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models
SummaryTranscription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report here the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter for which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and hepatitis C infection. We found little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease
Recommended from our members
A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models
Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report here the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter for which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor-neuron death, and hepatitis C infection. We found little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease.Stem Cell and Regenerative Biolog
Modeling Type 1 Diabetes In Vitro Using Human Pluripotent Stem Cells
Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including β cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived β cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response
An hPSC-Derived Tissue-Resident Macrophage Model Reveals Differential Responses of Macrophages to ZIKV and DENV Infection
Summary: Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly activates macrophage migration inhibitory factor (MIF) secretion and decreases macrophage migration. Neutralization of MIF leads to improved migratory ability of DENV-infected macrophages. In contrast, ZIKV-infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines. Mechanistically, ZIKV disrupts the nuclear factor κB (NF-κB)-MIF positive feedback loop by inhibiting the NF-κB signaling pathway. Our results demonstrate the utility of hPSC-derived macrophages in infectious disease modeling and suggest that the distinct impact of ZIKV and DENV on macrophage immune response may underlie different pathogenesis of Zika and dengue diseases. : In this article, Tang and colleagues demonstrate the utility of hPSC-derived tissue-resident macrophages in infectious disease modeling and show differential responses of macrophages to ZIKV and DENV infection. ZIKV-, but not DENV-, infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines by disrupting the NF-κB-MIF positive feedback loop via inhibition of the NF-κB signaling pathway. Keywords: human pluripotent stem cells, macrophage differentiation, Zika virus, dengue virus, dissemination, immune response, NF-κB signaling, macrophage migration, MIF, disease modelin
NLR family member NLRC5 is a transcriptional regulator of MHC class I genes
MHC class I plays a critical role in the immune defense against viruses and tumors by presenting antigens to CD8 T cells. An NLR protein, class II transactivator (CIITA), is a key regulator of MHC class II gene expression that associates and cooperates with transcription factors in the MHC class II promoter. Although CIITA also transactivates MHC class I gene promoters, loss of CIITA in humans and mice results in the severe reduction of only MHC class II expression, suggesting that additional mechanisms regulate the expression of MHC class I. Here, we identify another member of the NLR protein family, NLRC5, as a transcriptional regulator of MHC class I genes. Similar to CIITA, NLRC5 is an IFN-γ–inducible nuclear protein, and the expression of NLRC5 resulted in enhanced MHC class I expression in lymphoid as well as epithelial cell lines. Using chromatin immunoprecipitation and reporter gene assays, we show that NLRC5 associates with and activates the promoters of MHC class I genes. Furthermore, we show that the IFN-γ–induced up-regulation of MHC class I requires NLRC5, because knockdown of NLRC5 specifically impaired the expression of MHC class I. In addition to MHC class I genes, NLRC5 also induced the expression of β2-microglobulin, transporter associated with antigen processing, and large multifunctional protease, which are essential for MHC class I antigen presentation. Our results suggest that NLRC5 is a transcriptional regulator, orchestrating the concerted expression of critical components in the MHC class I pathway
Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves
The epitaxy of many organic films
on inorganic substrates can be
classified within the framework of rigid lattices which helps to understand
the origin of energy gain driving the epitaxy of the films. Yet, there
are adsorbate–substrate combinations with distinct mutual orientations
for which this classification fails and epitaxy cannot be explained
within a rigid lattice concept. It has been proposed that tiny shifts
in atomic positions away from ideal lattice points, so-called static
distortion waves (SDWs), are responsible for the observed orientational
epitaxy in such cases. Using low-energy electron diffraction and scanning
tunneling microscopy, we provide direct experimental evidence for
SDWs in organic adsorbate films, namely hexa-<i>peri</i>-hexabenzocoronene on graphite. They manifest as wave-like sub-Ångström
molecular displacements away from an ideal adsorbate lattice which
is incommensurate with graphite. By means of a density-functional-theory
based model, we show that, due to the flexibility in the adsorbate
layer, molecule–substrate energy is gained by straining the
intermolecular bonds and that the resulting total energy is minimal
for the observed domain orientation, constituting the orientational
epitaxy. While structural relaxation at an interface is a common assumption,
the combination of the precise determination of the incommensurate
epitaxial relation, the direct observation of SDWs in real space,
and their identification as the sole source of epitaxial energy gain
constitutes a comprehensive proof of this effect