346 research outputs found

    Communicating and Visualising Urban Planning in Cold War Berlin

    Get PDF
    This article analyses the dynamics of communication, specifically with regard to the significance of visualisations in urban planning between the two competing political regimes of East and West Germany in divided Berlin (1945–1989). The article will demonstrate the ways in which planners on either side of the Iron Curtain were confronted with matters unique to their own political contexts and conditions for public communication, as well as how they faced similar challenges in fields of urban renewal and negotiating public participation. The post-war decades in Berlin were marked by strong planning dynamics: large-scale reconstruction after WWII and the ‘showcase character’ of political confrontation and competition. In this context, new strategies of communicating urban planning to the public were developed, such as large-scale development plans, public exhibitions and cross-border media campaigns. Paradigmatic shifts during the mid-1970s generated new discourses about urban renewal and historic preservation. The new focus on small-scale planning in vivid and inhabited inner-city neighbourhoods made new forms of communication and public depiction necessary. In the context of social and political change as well as growing mediatisation, planning authorities utilised aspects of urban identity and civic participation to legitimise planning activities. The article traces two small-scale planning projects for neighbourhoods in East and West Berlin and investigates the interrelation of visual communication instruments in public discourses and planning procedures during the 1980s, a period that prominently featured the new strategy of comprehensive planning. Furthermore, the article highlights the key role of micro-scale changes in the management of urban renewal along both sides of the wall and the emergence of neighbourhood civil engagement and participation

    Basic life support skills of high school students before and after cardiopulmonary resuscitation training: a longitudinal investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immediate bystander cardiopulmonary resuscitation (CPR) significantly improves survival after a sudden cardiopulmonary collapse. This study assessed the basic life support (BLS) knowledge and performance of high school students before and after CPR training.</p> <p>Methods</p> <p>This study included 132 teenagers (mean age 14.6 ± 1.4 years). Students completed a two-hour training course that provided theoretical background on sudden cardiac death (SCD) and a hands-on CPR tutorial. They were asked to perform BLS on a manikin to simulate an SCD scenario before the training. Afterwards, participants encountered the same scenario and completed a questionnaire for self-assessment of their pre- and post-training confidence. Four months later, we assessed the knowledge retention rate of the participants with a BLS performance score.</p> <p>Results</p> <p>Before the training, 29.5% of students performed chest compressions as compared to 99.2% post-training (<it>P </it>< 0.05). At the four-month follow-up, 99% of students still performed correct chest compressions. The overall improvement, assessed by the BLS performance score, was also statistically significant (median of 4 and 10 pre- and post-training, respectively, P < 0.05). After the training, 99.2% stated that they felt confident about performing CPR, as compared to 26.9% (<it>P </it>< 0.05) before the training.</p> <p>Conclusions</p> <p>BLS training in high school seems highly effective considering the minimal amount of previous knowledge the students possess. We observed significant improvement and a good retention rate four months after training. Increasing the number of trained students may minimize the reluctance to conduct bystander CPR and increase the number of positive outcomes after sudden cardiopulmonary collapse.</p

    Identification of Novel Imprinted Differentially Methylated Regions by Global Analysis of Human-Parthenogenetic-Induced Pluripotent Stem Cells

    Get PDF
    Parental imprinting is an epigenetic phenomenon by which genes are expressed in a monoallelic fashion, according to their parent of origin. DNA methylation is considered the hallmark mechanism regulating parental imprinting. To identify imprinted differentially methylated regions (DMRs), we compared the DNA methylation status between multiple normal and parthenogenetic human pluripotent stem cells (PSCs) by performing reduced representation bisulfite sequencing. Our analysis identified over 20 previously unknown imprinted DMRs in addition to the known DMRs. These include DMRs in loci associated with human disorders, and a class of intergenic DMRs that do not seem to be related to gene expression. Furthermore, the study showed some DMRs to be unstable, liable to differentiation or reprogramming. A comprehensive comparison between mouse and human DMRs identified almost half of the imprinted DMRs to be species specific. Taken together, our data map novel DMRs in the human genome, their evolutionary conservation, and relation to gene expression

    Individual Factors Contributing to Nausea in First-Time Chemotherapy Patients: A Prospective Cohort Study

    Get PDF
    Objective: The expectation of developing side effects can enhance the likelihood to develop them – a phenomenon referred to as nocebo effect. Whether nocebo effects can be reduced by lowering negative expectancies, is not clear. The aim of this prospective study was to learn more about the factors contributing to nausea expectancy and their potential role in actual occurrence of nausea in patients undergoing chemotherapy for the first time in their life. Methods: Patients scheduled for moderately emetogenic chemotherapeutic regimens filled in questionnaires to assess state anxiety and quality of life and to rate the expectancy of nausea as a side effect of chemotherapy. Patient diaries were used to monitor the severity of post-chemotherapy nausea in the 4 days following chemotherapy administration. Bivariate analyses complemented by multiple regression analyses were performed to identify the relationship between nausea expectation and nausea occurrence. Results: 121 female patients (mean age 53 years) with completed questionnaires were included in the analyses. The majority of the patients had a diagnosis of breast cancer (86%). The two main sources for nausea expectancy were positive history of nausea in other situations and state anxiety. Patients with high expectancy levels (first quartile) experienced greater nausea than those with lower expectancy levels. Bivariate analyses revealed a weak but non-significant association between nausea expectation and post-chemotherapy nausea. When controlling for age, type of cancer, history of nausea, state and trait anxiety, and global quality of life, positive history of nausea (OR = 2.592; 95% CI, 1.0 to 6.67; p < 0.05), younger age (OR = 0.95; 95% CI, 0.92 to 0.99; p < 0.05), and a lower quality of life (OR = 0.97; 95% CI, 0.94 to 1.0; p < 0.05), but not nausea expectancy (OR = 1.014; 95% CI, 0.51 to 2.02; p = 0.969), predicted the occurrence of post-chemotherapy nausea. Conclusion: In this female cohort, younger patients with lower initial quality of life and a positive history of nausea were at higher risk to develop nausea after first time chemotherapy. These patients may benefit from psychological co-interventions that aim to enhance quality of life

    Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution

    Get PDF
    August 1, 2010Bisulfite sequencing measures absolute levels of DNA methylation at single-nucleotide resolution, providing a robust platform for molecular diagnostics. Here, we optimize bisulfite sequencing for genome-scale analysis of clinical samples. Specifically, we outline how restriction digestion targets bisulfite sequencing to hotspots of epigenetic regulation; we show that 30ng of DNA are sufficient for genome-scale analysis; we demonstrate that our protocol works well on formalinfixed, paraffin-embedded (FFPE) samples; and we describe a statistical method for assessing significance of altered DNA methylation patterns.National Institutes of Health (U.S.) (Grant R01HG004401)National Institutes of Health (U.S.) (Grant U54HG03067)National Institutes of Health (U.S.) (Grant U01ES017155

    All-fibre source of amplitude-squeezed light pulses

    Full text link
    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimisation of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations [Schmitt etl.al., PRL Vol. 81, p.2446, (1998)]. The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science

    Genomic Distribution and Inter-Sample Variation of Non-CpG Methylation across Human Cell Types

    Get PDF
    DNA methylation plays an important role in development and disease. The primary sites of DNA methylation in vertebrates are cytosines in the CpG dinucleotide context, which account for roughly three quarters of the total DNA methylation content in human and mouse cells. While the genomic distribution, inter-individual stability, and functional role of CpG methylation are reasonably well understood, little is known about DNA methylation targeting CpA, CpT, and CpC (non-CpG) dinucleotides. Here we report a comprehensive analysis of non-CpG methylation in 76 genome-scale DNA methylation maps across pluripotent and differentiated human cell types. We confirm non-CpG methylation to be predominantly present in pluripotent cell types and observe a decrease upon differentiation and near complete absence in various somatic cell types. Although no function has been assigned to it in pluripotency, our data highlight that non-CpG methylation patterns reappear upon iPS cell reprogramming. Intriguingly, the patterns are highly variable and show little conservation between different pluripotent cell lines. We find a strong correlation of non-CpG methylation and DNMT3 expression levels while showing statistical independence of non-CpG methylation from pluripotency associated gene expression. In line with these findings, we show that knockdown of DNMTA and DNMT3B in hESCs results in a global reduction of non-CpG methylation. Finally, non-CpG methylation appears to be spatially correlated with CpG methylation. In summary these results contribute further to our understanding of cytosine methylation patterns in human cells using a large representative sample set
    corecore