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Parental imprinting is an epigenetic phenomenon by which genes are expressed in a monoallelic fashion, according to their parent of

origin. DNA methylation is considered the hallmark mechanism regulating parental imprinting. To identify imprinted differentially

methylated regions (DMRs), we compared the DNA methylation status between multiple normal and parthenogenetic human pluripo-

tent stem cells (PSCs) by performing reduced representation bisulfite sequencing. Our analysis identified over 20 previously unknown

imprinted DMRs in addition to the known DMRs. These include DMRs in loci associated with human disorders, and a class of intergenic

DMRs that do not seem to be related to gene expression. Furthermore, the study showed some DMRs to be unstable, liable to differen-

tiation or reprogramming. A comprehensive comparisonbetweenmouse andhumanDMRs identified almost half of the imprintedDMRs

to be species specific. Taken together, our data map novel DMRs in the human genome, their evolutionary conservation, and relation to

gene expression.
INTRODUCTION

Parental imprinting is a form of epigenetic regulation by

which genes are expressed from only one of the two

parental alleles. In humans, loss of imprinting is associated

with several diseases (e.g., Prader-Willi/Angelman syn-

dromes) and malignancies (e.g., Wilm’s tumor) (Yamazawa

et al., 2010). The generation of mouse embryos containing

only maternal (parthenogenetic) or paternal (androge-

netic) alleles (McGrath and Solter, 1984; Surani and Barton,

1983; Surani et al., 1984) demonstrated the importance of

imprinting for restricting asexual form of reproduction in

placental mammals. Parthenogenesis may occur naturally

in humans resulting in parthenogenetic ovarian teratomas.

We have recently generated human-parthenogenetic-

induced pluripotent stem cells (PgHiPSCs) by reprogram-

ming of parthenogenetic ovarian teratomas (Stelzer et al.,

2011). Studying the gene expression of PgHiPSCs enabled

us to identify novel paternally expressed genes (PEGs),

and to study the developmental potential of these cells

(Stelzer et al., 2011). Differential marking of DNA methyl-

ation in the gametes is considered thehallmarkmechanism

controlling parental imprinting as it establishes germline

DMRs (gDMRs), which are then maintained throughout

the life of the embryo (Proudhon et al., 2012; Reik et al.,

2001; Smith et al., 2012). In the past few years, global sur-

veys of imprinted DMRs in themouse were reported (Hiura

et al., 2010; Kelsey et al., 1999; Proudhon et al., 2012; Singh

et al., 2011), and recently DNA methylation analysis at

single-base resolution, performed on reciprocal crosses of
inbred-mice, identified dozens of novel DMRs (Xie et al.,

2012). In humans, however, due to ethical and technical

limitations, only few low-resolution surveys were achieved

thus far (Choufani et al., 2011).Moreover, the vastmajority

of DMRs in humans were identified by association with

certain diseases or by sharing synteny with mouse DMRs.

In this study, we aimed to perform a comprehensive anal-

ysis of imprinted DMRs in humans. We thus analyzed

global DNA methylation of our PgHiPSCs and their

parental fibroblasts by reduced representation bisulfite

sequencing (RRBS) (Gu et al., 2011; Meissner et al., 2008)

and compared the methylation signature to that of a large

panel of human embryonic stem cells (HESCs) and induced

pluripotent stem cells (HiPSCs) (Bock et al., 2011).
RESULTS

Analysis of Known Imprinted DMRs in Human

Pluripotent Stem Cells

Parthenogenetic cells lack the paternal allele and are there-

fore expected to exhibit differential methylation patterns

in imprinted DMRs when compared to normal biparental

cells. Notably, comparing the DNA methylation signature

can equally identify maternal DMRs (mDMRs), which are

expected to show hypermethylation and paternal DMRs

(pDMRs), which will exhibit hypomethylation when

compared to normal cells (Figure S1A available online).

Recently, a similar approachwas used to identify epigenetic

variation of known imprintedDMRs (Nazor et al., 2012). To
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mailto:alexander_meissner@harvard.edu
mailto:nissimb@cc.huji.ac.il
http://dx.doi.org/10.1016/j.stemcr.2013.03.005


Table 1. Analysis of Previously Identified Human Imprinted
DMRs

Chromosome Locus CGI
Diff
(ES-PG)

Parent of
Origin

chr1 DIRAS3 Yes 0.12 M

chr2 ZDBF2 Yes 0.22 P

chr6 PLAGL1 No 0.20 M

chr7 GRB10 Yes 0.29 M

chr7 PEG10/SGCE No 0.51 M

chr7 MEST Yes 0.27 M

chr10 INPP5F Yes 0.25 M

chr11 H19 Yes 0.21 P

chr11 H19 – ICR Yes 0.38 P

chr11 IGF2 DMR1 No 0.12 P

chr11 KCNQ1OT1 Yes 0.23 M

chr14 MEG3 No 0.35 P

chr15 AS-ICR Yes 0.48 M

chr15 SNURF-SNRPN Yes 0.47 M

chr16 NAT15,ZNF597 Yes 0.30 P

chr19 PEG3 Yes 0.14 M

chr20 BLCAP,NNAT Yes 0.16 M

chr20 L3MBTL Yes 0.23 M

chr20 GNASXL Yes 0.19 M

chr20 NESPAS No 0.57 M

chr20 GNAS1A Yes 0.21 M

chr20 GNAS1A - exon 1 No 0.13 M

List of previously identified imprinted DMRs. CGI, CpG island; M, maternal; P,

paternal. See also Figure S3.
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carry out a comprehensive study of DNA methylation in

PgHiPSCs, we performed RRBS on four iPSC lines derived

from two independent parthenogenetic teratoma cell lines,

which were shown to exhibit a complete homozygote

diploid genome (Stelzer et al., 2011). Similar analysis was

performed on the parental parthenogenetic teratoma cell

lines. The data were then filtered and evaluated through

bioinformatic analysis (Bock et al., 2010), yielding high-

coverage reads and reproducible results (Figure S1B). We

next compared the global DNA methylation profiles of

PgHiPSCs, their parental cells with previously published

data sets including 20 samples of HESCs, 12 samples of

HiPSCs, and six samples of normal human fibroblasts
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(Bock et al., 2011). This large data set of undifferentiated

and differentiated cells has previously enabled the identifi-

cation of epigenetic changes associatedwith X inactivation

(Mekhoubad et al., 2012) and was now utilized as a refer-

ence for a comprehensive study of epigenetic changes asso-

ciated with parental imprinting in the different cell types.

Unsupervised hierarchical clustering demonstrated that

the undifferentiated pluripotent stem cells share a distinct

epigenetic signature, which distinguishes them from

mature parthenogenetic and normal somatic cells (Fig-

ure S2A). We then analyzed the status of methylation of

known imprinted DMRs (Table 1). Since loss of imprinting

is associated with disease and malignancies, perturbations

in imprinted DMRs may affect the therapeutic potential

ofHESCs.We therefore studied the heterogeneity of known

imprinted DMRs in HESCs (Figure 1A). While most of the

DMRs examined maintain stable hemimethylation values

in wild-type samples (averagemethylation calls [AMCs] be-

tween 0.3 and 0.7), few DMRs (PEG3, DIRAS3, and ZDBF2)

show more variable values in the pluripotent stem cells.

This effect does not seem to correlate with culture

passaging as the variabilitywas evident even in low-passage

HESCs (Figure S2B). We next asked whether reprogram-

ming of somatic cells to pluripotency affects the methyl-

ation levels of known DMRs. In agreement with our

previous study on the stability of imprinted genes in

HiPSCs (Pick et al., 2009), the vast majority of DMRs main-

tain hemimethylation values, thus demonstrating striking

similarities between HiPSCs and HESCs (Figure 1B).

However, the three DMRs that exhibit the highest levels

of variation in HESCs show loss of imprinting in HiPSCs

and are consistently hypermethylated in these cells. This

can be due to loss of imprinting in the parental fibroblasts,

or, alternatively, imply that these DMRs are more suscepti-

ble to aberrant methylation during reprogramming. To

distinguish between the two options, we examined the

methylation levels of these DMRs in the parental somatic

cells (Figure S2C). Our results show that, while PEG3 and

DIRAS3 DMRs exhibit loss of imprinting already in the

parental cells, the ZDBF2 DMR may be prone to perturba-

tions that are due to the reprogramming process. Studying

the methylation levels of DMRs in 16-day-old embryoid

bodies (EBs), that were differentiated from HESCs, further

emphasized that in vitro differentiation resulted in loss of

the DMR in DIRAS3 and PEG3 sites (Figure 1C). We next

compared the methylation levels of known DMRs between

PgHiPSCs and HESCs. Unlike normal HiPSCs, the parthe-

nogenetic HiPSCs can be distinguished from HESCs in

virtually all imprinted DMRs examined (Figure 1D), and

are either hypermethylated (AMC >0.7) or hypomethy-

lated (AMC <0.3) in comparison to the hemimethylation

state of the HESCs (AMC between 0.3 and 0.7). For

example, the two well-studied imprinted DMR loci
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Figure 1. Genome-wide Analysis of
Imprinted DMRs in PSCs
(A) Box-plot analysis showing distribution
of DNA methylation in 20 HESCs lines in
known imprinted DMRs. DMRs are ordered
according to the levels of heterogeneity
(x axis).
(B–D) Average methylation calls ± SE of
different cell types in known imprinted
DMRs. DMRs are ordered by chromosome
numbers (x axis); small arrows pointing to
DMRs that are perturbed in the different cell
types.
(E and F) Regional view of KCNQ1 and H19
known DMR. Average methylation values for
wild-type PSCs (blue) and PgHiPSCs (red) of
all CpG calls. Green track indicates the dif-
ference between hemimethylated (AMC be-
tween 0.3 and 0.7) wild-type PSCs and
PgHiPSCs CpGs. Shown are significant pu-
tative CTCF binding sites in H1 ES cells from
the ENCODE project (depicted in black
rectangles, p value < 1 3 10�5) and CpG
islands (UCSC) in dark-blue rectangles.
See also Figures S1 and S2.
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KCNQ1OT and IGF2-H19 are either hypermethylated

(mDMR, Figure 1E) or hypomethylated (pDMR, Figure 1F)

in the PgHiPSCs, in comparison to being hemimethylated

in the biparental cells.

Genome-wide Search for Novel Imprinted DMRs

In order to identify novel imprinted DMRs throughout the

genome, we first verified the integrity of our data by study-

ing themethylation values of previously discovered DMRs.

Out of 22 well-established imprinted DMRs, 18 are either

hypermethylated or hypomethylated in the PgHiPSCs in

comparison to HESCs (methylation difference >0.15). Of

the four known DMRs that could not be identified in our
analysis, three also show loss of imprinting in the normal

PSCs (e.g., PEG3), and one lost the imprint upon reprog-

ramming of the parthenogenetic somatic cells into

PgHiPSCs (e.g., GNAS, Figures S2D and S2E, respectively).

We next searched for hemimethylation regions in both

HESCs and HiPSCs and compared them to themethylation

status in PgHiPSCs. In addition, we focused on regions in

which the difference in DNA methylation levels between

PgHiPSCs and HESCs was greater than 0.2 (see Experi-

mental Procedures). Aberrant changes in DNA methyl-

ation, arising during the establishment of HiPSCs, are a

major concern when aiming to identify epigenetic differ-

ences between normal and parthenogenetic PSCs. We
Stem Cell Reports j Vol. 1 j 79–89 j June 4, 2013 j ª2013 The Authors 81



Table 2. Human Imprinted DMRs Identified in This Study

Chromosome Locus CGI Diff
Parent of
Origin

Differential
Gene Expression

DMRs in known imprinted regions chr11 TH,ASCL2 Yes 0.45 P Yes

chr14 DIO3 Yes 0.31 P No

chr15 WHAMMP3,NIPA1 Yes 0.23 P No

chr15 PWRN2 Yes 0.23 P No

chr15 LOC100289656 Yes 0.27 P No

chr16 FLYWCH1 Yes 0.23 M Yes

chr20 L3MBTL No 0.26 M No

chr20 GNAS Yes 0.27 M No

DMRs syntenic to mouse chr8 TRAPPC9 Yes 0.30 M No

chr15 NDN Yes 0.22 M Yes

chr15 MAGEL2 Yes 0.37 M Yes

DMRs in clusters chr1 NBPF Yes 0.20 P No

chr1 NBPF Yes 0.29 P No

DMRs in unknown regions chr1 TMEM51 Yes 0.38 M Yes

chr5 TSPAN17,UNC5A Yes 0.51 P No

chr7 TMEM176A/ B No 0.30 P Yes

chr9 RCL1 Yes 0.41 P No

chr9 ZNF322B Yes 0.31 M No

chr10 INPP5A Yes 0.22 M Yes

chr13 TSC22D1 No 0.31 M No

chr17 MIR301A No 0.43 M Yes

List of new imprinted DMRs identified in this study. CGI, CpG island; M, maternal; P, paternal; Diff, difference in DNA methylation values between normal

HESCs and PgHiPSCs. Differential gene expression was calculated according to the ratio in RPKM (reads per kilobase of exon model per million mapped reads)

between normal and parthenogenetic cell. Fold change >2 is indicated.
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therefore studied multiple HiPSC lines, derived from

different sources. Furthermore, we filtered out regions of

recurrent aberrant reprogramming, which were previously

mapped in iPS cell lines derived from distinct tissues (Lister

et al., 2011). This analysis identified 21 novel DMRs: eight

of which are located in well-known imprinted regions

(three of which are in the Prader-Willi/Angelman region),

three are known to be imprinted in mice, and two appear

in a cluster, a common phenomenon for imprinted genes

(Ferguson-Smith, 2011) (Table 2, permutation test, p

value = 0.011). These clustered DMRs are of specific interest

as they reside in the Neuroblastoma breakpoint family

(NBPF), suggesting that parental imprinting may be

involved in the acquisition of the disease. Eight novel

DMRs appear in regions not previously suggested to be im-
82 Stem Cell Reports j Vol. 1 j 79–89 j June 4, 2013 j ª2013 The Authors
printed. This type of novel DMR had good sequencing

coverage and showed high levels of consistency between

different samples of the same cell type (Table 2, permuta-

tion test, p value = 0.0059, see Experimental Procedures).

To link between DNA methylation and gene expression

on a genome-wide scale, we performed RNA sequencing

(RNA-seq) in two independent PgHiPSC lines and two

normal HESC and HiPSC lines. Our experiment yielded

highly reproducible results and deep coverage reads.

Parthenogenetic cells lack the paternal genome and conse-

quently PEGs are expected to show downregulation when

compared to normal biparental cells. Interestingly, we

could identify five differentially expressed genes between

PgHiPSCs and normal PSCs within 200 kb of the novel

DMRs, strengthening the notion that they are potentially
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novel imprinted genes (Figure S2F). Notably, of our 21

novel imprinted DMRs (Figure S3) five are in the Prader-

Willi/Angelman region, two of which are located in the

promoters of known PEGs (NDN and MAGEL2) and are

considered secondary DMRs, resulting from the maternal

gDMRs in this region, and three are novel DMRs residing

in yet-uncharacterized regions of this locus (Figure S4A).

As the complex phenotypes in both Prader-Willi and

Angelman patients are still poorly understood (Mann and

Bartolomei, 1999), it will be of great interest to analyze

the status of these DMRs in patients.

Characterization of Imprinted DMRs Identifies

a Novel Class of Intergenic DMRs

The transcription factor CTCF is a known regulator of

several imprinted loci (Bell and Felsenfeld, 2000; Bell

et al., 1999; Hark et al., 2000). Intriguingly, when we

analyzed chromatin immunoprecipitation sequencing

(ChIP-seq) results of CTCF binding sites in HESCs (Con-

sortium, 2011), we could identify significant enrichments

(p value < 1 3 10�5) for CTCF binding sites in proximity

to many of the novel DMRs (15/21, Figures 2A and S3),

but could not find this enrichment for other pluripotent

transcription factors. Using locus-specific bisulfite

sequencing, we confirmed two of the novel DMRs,

WHAMMP3 and TAPPC9, as paternal and maternal

DMRs, respectively (Figure 2B). Studying the stability of

the novel imprinted DMRs in different cell types identified

that all of the novel DMRs show striking similarities in

methylation levels between HESCs and HiPSCs, but differ

significantly from the PgHiPSCs (Figures 2C and 2D).More-

over, the vast majority of the novel DMRs are highly stable

in both the undifferentiated and differentiated state (Fig-

ure 2E). A notable exception is the newly identified DMR

in the L3MBTL locus, which similarly to DIRAS3 and

PEG3 shows loss of imprinting following in vitro differen-

tiation (Figure 2E). We next aimed to globally examine

the properties of all imprinted DMRs identified in this

study (n = 43). Plotting the chromosomal distribution of

all imprinted DMRs elucidates that only a few chromo-

somes lack parental imprinting marks in humans (Fig-

ure 3A). The distribution of DMRs suggests that there are

four genomic clusters of imprinted DMRs (IGF2-H19,

DLK1-DIO3, SNURF-SNRPN, and GNAS loci), which prob-

ably result from differential gene expression (secondary

DMRs) originating from the gDMRs in these loci. Two clus-

ters (chromosomes 11 and 15) are marked by both paternal

andmaternal DMRs, while the two other clusters (chromo-

somes 14 and 20) are either complete maternal or paternal.

Close examination of all imprinted DMRs (Figure 3B)

shows that approximately 20% of all DMRs are not associ-

ated with genes (intragenic regions) or gene promoters and

are located in intergenic region (>4 kb of any nearby gene),
a significant enrichment to the previously identified group

of DMRs (Figure S4B). Studying the distance between the

intergenic DMRs to their nearest gene reveals that, unlike

the previously identified DMRs (Figure S4C), some inter-

genic DMRs are located as far as 10 kb from their nearest

genes (Figure 3C). Moreover, the vast majority of the in-

tergenic DMRs that reside in gene-poor regions are of

paternal origin (pDMRs, Figure 3D), which is in agree-

ment with previous reports (Bartolomei and Ferguson-

Smith, 2011). To link gene expression and DNA

methylation at imprinted DMRs, we analyzed our RNA-

seq data and compared between normal PSCs and

PgHiPSCs. First, we focused on promoter and intragenic

DMRs. This class of imprinted DMRs are predicted to regu-

late the expression of their nearby genes. However, as

some imprinted DMRs were previously shown to affect

genes in cluster (e.g., SNRPN intron-2 DMR), we included

all genes that arewithin 200 kb from theDMRs. Comparing

this group of genes to that of all expressed genes in PSCs

shows that most genes that are associated with imprinted

DMRs are downregulated in the PgHiPSCs (Figure 3E; Table

S1). However, few known PEGs (e.g., INPP5F, GRB10, and

MEST), and some putative imprinted genes identified in

this study, are expressed at high levels in the PgHiPSCs

(Table S1), while their associate imprintedDMR is hyperme-

thylated. This suggests that some of the putative imprinted

genes are tissue specific and will start to be expressed from

only one of the two parental alleles at a later stage in devel-

opment (Frost andMoore, 2010). Itwas recently shown that

DNA methylation in intragenic regions may serve as alter-

native promoters in a tissue-specific manner (Maunakea

et al., 2010); it will thus be of interest to study the monoal-

lelic expression of these putative imprinted genes in

different adult tissues. We next examined the group of

novel intergenic imprinted DMRs that are located more

than 10 kb from the nearest gene (Table S2). Here, we

expanded our gene-expression analysis to include genes

that are within 1 Mb of the DMR, in order to allow the

discovery of long-range regulatory effects. Surprisingly,

none of the novel intergenic DMRs had any effect on

gene expression in PSCs (Figure 3F; Table S2) and thus could

be classified as a novel class of intergenic imprinted DMRs.

Altogether, our gene-expression analysis in the pluripotent

state could document only few novel imprinted genes,

suggesting that some of the novel DMRsmay regulate other

processes beside gene expression or are regulated in a tissue-

specific manner.

Comprehensive Comparison between Mouse

and Human Imprinted DMRs

Mice serve as a good model for studying parental

imprinting in humans. We therefore aimed to conduct a

comprehensive comparison between mouse and human
Stem Cell Reports j Vol. 1 j 79–89 j June 4, 2013 j ª2013 The Authors 83
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Figure 2. Genome-wide Analysis of Imprinted DMRs in PSCs
(A) Regional view of two representative new DMR, TRAPPC9 and WHAMMP3. Average methylation values for wild-type HESCs (blue) and
PgHiPSCs (red) of all CpG calls. Green track indicates the difference between hemimethylated (AMC between 0.3 and 0.7) wild-type PSCs
and PgHiPSCs CpGs. Shown are significant putative CTCF binding sites in H1 ES cells from the ENCODE project (depicted in black rectangles,
p value < 1 3 10�5) and CpG islands (UCSC) in dark-green rectangles. See also Figure S3.
(B) Bisulfite sequencing validation of pDMR (WHAMMP3, upper panel) and mDMR (TRAPPC9, lower panel) was conducted on normal
independent PSC not included in the original analysis and PgHiPSCs lines.
(C–E) Methylation values (y axis) ± SE in various cell types across the different imprinted DMRs (x axis); small arrows pointing to DMRs that
are perturbed in the different cell types. (C) Comparison between HESCs and HiPSCs demonstrate the striking similarities between the two
cell types. (D) Comparison between HESCs and the PgHiPSCs showing the differences between the two cell types in methylation values, as
the PgHiPSCs are either hypermethylated (AMC >0.7) or hypomethylated (AMC <0.3) in comparison to hemimethylation state (AMC
between 0.3 and 0.7) of the biparental cells. (E) Analysis of methylation in 16-day-old EBs differentiated from HESCs, demonstrating that
the newly identified imprinted DMRs are highly stable following in vitro differentiation. Notable exception is the DMR in the L3MBTL locus,
which is consistently hypomethylated in the differentiated cells.
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imprinted DMRs. We first examined mouse DMRs that

were systematically identified in previous studies,

focusing on DMRs that share synteny between mouse

and human genomes and had sufficient coverage of reads

in our cells. We also studied the corresponding genomic

organization of mouse DMRs in which synteny was par-

tial or not present in the human genome in order to iden-

tify putative human DMRs. Our data suggest that more
84 Stem Cell Reports j Vol. 1 j 79–89 j June 4, 2013 j ª2013 The Authors
than a third of the previously identified mouse imprinted

DMRs do not have an equivalent DMR in the human

genome (Figure 4A; Table S3). We next took advantage

of a recently established single-base resolution analysis

of DNA methylation in the mouse (Xie et al., 2012), to

compare between mouse novel imprinted DMRs and

the DMRs identified in our study. Strikingly, our analysis

shows almost half of all imprinted DMRs are species
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Figure 3. Characterization of Imprinted DMRs Identified in This Study
(A) Chromosomal distribution of the 43 imprinted DMRs.
(B) Pie chart representing the different genomic properties of all imprinted DMRs.
(C) Distribution of distances of the imprinted intergenic DMRs to their nearest gene.
(D) Percentage of maternal and paternal DMRs; all DMRs identified (left bar) and the subset of intergenic DMRs (right panel).
(E and F) Distribution of expression ratios between normal PSCs and PgHiPSCs; x axes represent the log2 fold change between normal PSCs
and PgHiPSCs, and y axes represent the distribution of frequencies for each of the samples; values for individual genes are represented by
small vertical lines on the x axes; Verticals segmented red lines represent 2-fold in expression ratio. (E) Blue, genes associated with
intragenic mDMRs (n = 64); black, all expressed genes (>30 reads, n = 13,223). See also Table S1. (F) Orange, genes associated with
intergenic DMRs (>10 kb from the nearest gene, n = 23); black, all expressed genes.
See also Figure S4 and Table S2.
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specific (Figure 4B; Table S3). Genomic synteny analysis

shows that some of the mouse-specific imprinted DMRs,

such as Commd1/Zrsr1 DMR, lack a syntenic region in hu-

mans (Figure 4C). Since most of the studies so far were

conducted in mouse, only four human-specific DMRs

were identified to date. In this study, we could add 17
novel human-specific DMRs. Close examination of the

data reveals that some of these DMRs may have acquired

the imprint after diverging from the mouse and human

common ancestor, as they share synteny with regions

in which imprinted DMR was not identified in the mouse

(Figure 4D).
Stem Cell Reports j Vol. 1 j 79–89 j June 4, 2013 j ª2013 The Authors 85
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Figure 4. Synteny Analysis between Mouse and Human
Imprinted DMRs
(A) DNA methylation analysis of previously identified mouse DMRs
in human syntenic regions. See also Table S3.
(B) Vann diagram demonstrating species-specific imprinted DMRs
in known DMRs (upper panel), and in novel DMRs (lower panel)
identified either by Xie et al. (2012) (left subset) or in our study
(right subset). Bottom numbers represent the number of species-
specific DMRs (left and right) and shared DMRs among species. See
also Table S3.
(C and D) (C) Synteny analysis of mouse-specific DMR in
the Commd1/Zrsr1, and (D) the human-specific DMRs WHAMMP3
and LOC100289656 that resides in the Prader-Willi/Angelman
region.
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DISCUSSION

In this study, we identified altogether 21 novel imprinted

DMRs, including a novel class of intergenic DMRs, which

reside in regions with no apparent imprinted genes in

PSCs. This class of imprinted DMRs either may regulate

genes in a tissue-specific manner, thus adding to

the complexity of parental regulation in the adult tissues,

or these parental marks regulate genes that are yet to

be discovered. Notably, both WHAMMP3 and

LOC100289656, intergenic pDMRs in the Prader-Willi/

Angelman region, are located in close proximity to a cluster

of piRNAs. This class of regulatory small noncoding RNAs

was previously linked with parental imprinting (Watanabe

et al., 2011), and thus it is attractive to suggest that this spe-

cific cluster of genes is expressed in a monoallelic fashion.

The previously identified complex three-dimensional orga-

nization of the genome (Lieberman-Aiden et al., 2009) also

suggests that this class of intergenic DMRs may interact

with genes located in remote regions, thus regulating

them in trans. Alternatively, it is plausible that this novel

class of intergenic DMRs regulates other processes beside

gene expression. As it was previously suggested, parental

imprinting may be involved in marking the parental

genomes for recombination (Pardo-Manuel de Villena

et al., 2000). It will thus be of great interest to study

whether these intergenic DMRs may serve as hot spots for

genetic processes such as recombination. The use of mouse

model systems has greatly enhanced our understanding of

parental imprinting. Yet, some genes that are imprinted in

the mouse are not imprinted in the human orthologous

gene (Bartolomei and Ferguson-Smith, 2011). Moreover,

some mouse models fail to recapitulate phenotypes associ-

ated with human-imprinted syndromes (Mann and Barto-

lomei, 1999). Strikingly, our data imply that more than

50% of mouse- and human-imprinted DMRs are species

specific. In addition, some of these DMRs (e.g.,WHAMMP3

and LOC100289656) reside in loci, which are associated

with known human diseases such as Prader-Willi and An-

gelman syndromes. Therefore, our results emphasize the

importance of studying imprinted DMRs in human. In

addition, our analysis identified that several imprinted

DMRs are consistently perturbed in HESCs and HiPSCs

and thus should be carefully evaluated if these cells are to

be used for clinical applications. Furthermore, as loss of

imprinting was correlated before with different types of

cancers, it will be worthy to study the differential methyl-

ation status of both previously identified and novel

imprinted DMRs in tumor cell types.

The genomic coverage of RRBS is �10%; however, it

covers the majority of CpG islands (CGIs) and promoters

in the human genome (Harris et al., 2010). As the vast

majority of previously identified imprinted DMRs reside



Table 3. Bisulfite Sequencing Primer List

DMR Forward Primer Reverse Primer

Bisulfite Seq TRAPPC9 GGTTTTAGTAGTATTAGGTA AAACTCTTTACCCTATAAAT

WHAMMP3 GAGATTTTATTTTAAGTATTTA CTAAAACCCAACCCTACTTCTATC
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in CGIs and promoters (82%, Figure S4D), our methodol-

ogy is highly informative for identifying novel imprinted

DMRs throughout the human genome. Future studies,

using whole genome single-base resolution analysis of

DNA methylation, will elucidate whether additional im-

printed DMRs are also present in CpG-poor regions. In

conclusion, we conducted a comprehensive analysis of im-

printed DMRs in humans, identifying multiple novel

DMRs, many of them not associated with gene expression.

Our data shed light on the extent of the phenomenon of

parental imprinting, suggesting that it may play a more

extensive role than was previously thought.
EXPERIMENTAL PROCEDURES

Genomic DNA Isolation
Total genomic DNA was extracted from the parthenogenetic iPS

and teratoma cells using genomic DNA extraction kit (Real Biotech

Corporation) according to the manufacturer’s protocol.

Reduced Representation Bisulfite Sequencing
Reduced representation bisulfite sequencing libraries were gener-

ated as previously described in Gu et al. (2011). Raw data were

analyzed using the bioinformatic pipeline described in Bock

et al. (2010).

Bioinformatic Analysis
To identify novel imprinted DMRs throughout the genome, we

searched for hemimethylated regions in both HESCs and HiPSCs

and compared them to the methylation values of the parthenoge-

netic samples (difference between PgHiPSCs and HESCs was

>0.2). A series of filters was implied in order to avoid false-positive

hits. Specifically, only regions that exhibited low variation

between all CpGs (SD < 0.2 in at least 60% of the samples for

each cell type) were considered. Further filtering was performed

by verifying high levels of consistency between the samples in

each group (SD for average regional methylation value <0.2).

Next, in order to rule out false DMRs created by aberrant reprog-

ramming (Lister et al., 2011), all regions in which there was no

agreement between PgHiPSCs and their parental fibroblasts

(difference between parthenogenetic and teratoma <0.2) were

filtered out. Next, a more stringent approach was used in order

to confidently identify imprinted DMRs in previously unknown

imprinted regions. Thus, in addition to the above-mentioned

criteria only regions with more than four shared CpGs and with

minimal coverage of five reads among all samples were used in

this study. As imprinted DMRs are maintained throughout the

development of the embryo, we also looked for hemimethylated
regions in normal fibroblasts. Finally, we included only regions

that met the following criteria: (1) methylation difference

between PgHiPSCs and HESCs >0.2; (2) methylation difference

between PgHiPSCs and HiPSCs >0.15; and (3) methylation

difference between parthenogenetic teratomas and normal

fibroblasts >0.15.

Statistical Analysis
In order to faithfully identify DMRs, all reduced representation

bisulfite sequencing (RRBS) regions with missing values were

removed. In addition, as X inactivation results in large-scale differ-

ential methylation between the active and inactive X chromo-

somes both sex chromosomes were removed from the analysis,

leaving 235,080 informative regions. Statistical significance of

the identified DMRs was assessed by randompermutations of sam-

ples between groups and recalculation of the average methylation

and statistical values for each region. Permutated data sets were

subject to the same criteria used to identify the DMRs and were

generated until 20 random data sets gave at least the same number

of DMRs as the original data set. p value was calculated as the prob-

ability of receiving the same number of hits in random data sets.

PCR Bisulfite Sequencing
Genomic DNA (2 mg) was bisulfite-converted using EZ DNA

methylation-Gold kit (Zymo Research), according to the manufac-

turer’s instructions. PCRs were performed using Faststart Taq DNA

polymerase (Roche) using primers designed to amplify suspected

DMRs. Following amplification, PCR products were cleaned using

Gel/PCR DNA fragments extraction kit (Geneaid) and ligated into

pGEM T-Easy vector (Promega) and transformed into DH5a bacte-

ria subjected to white/blue screen. Positive colonies were picked,

and plasmid DNA was extracted for sequencing using Geneaid

high-speed plasmid mini kit (New Taipei City, Taiwan). For a full

list of primers, see primer list in Table 3.

High-Throughput Sequencing
Total RNA was extracted using MirVana microRNA isolation kit

(Ambion Inc) according to the manufacturer’s protocol. Comple-

mentary DNA libraries were established following ribosomal RNA

(rRNA) depletion (RiboMinus Invitrogen). The SOLiD (version

3.5) sequencing system (Life Technologies) was used to generate

35-bp-long reads. Following barcode matching of the samples,

reads were aligned to UCSC complete build (GRCh37/hg19)

genome. All sequences that matched RNA contaminants such as

transfer RNA, rRNA, and DNA repeats were subsequently filtered.

Reads for each transcript was calculated in RPKM (reads per kilo-

base of exon model per million mapped reads) units, to obtain

normalization of the number of reads relative to their transcript

length.
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