1,389 research outputs found

    Thermal conductivity of the one-dimensional Fermi-Hubbard model

    Get PDF
    We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interactions and moreover, we compute its filling dependence at infinite temperature. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultra-cold quantum gas experiments and for transport measurements with quasi-one dimensional materials

    Comment on "Anomalous Thermal Conductivity of Frustrated Heisenberg Spin Chains and Ladders"

    Get PDF
    In a recent letter [Phys. Rev. Lett. 89, 156603 (2002); cond-mat/0201300], Alvarez and Gros have numerically analyzed the Drude weight for thermal transport in spin ladders and frustrated chains of up to 14 sites and have proposed that it remains finite in the thermodynamic limit. In this comment, we argue that this conclusion cannot be sustained if the finite-size analysis is taken to larger system sizes.Comment: One page REVTeX4, 1 figure. Published version (minor changes
    • …
    corecore