97 research outputs found
The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests
Interannual variations in CO2 exchange across Amazonia, as deduced from atmospheric inversions, correlate with El Niño occurrence. They are thought to result from changes in net ecosystem exchange and fire incidence that are both related to drought intensity. Alterations to net ecosystem production (NEP) are caused by changes in gross primary production (GPP) and ecosystem respiration (Reco). Here, we analyse observations of the components of Reco (leaves, live and dead woody tissue, and soil) to provide first estimates of changes in Reco during short-term (seasonal to interannual) moisture limitation. Although photosynthesis declines if moisture availability is limiting, leaf dark respiration is generally maintained, potentially acclimating upwards in the longer term. If leaf area is lost, then short-term canopy-scale respiratory effluxes from wood and leaves are likely to decline. Using a moderate short-term drying scenario where soil moisture limitation leads to a loss of 0.5 m2 m−2 yr−1 in leaf area index, we estimate a reduction in respiratory CO2 efflux from leaves and live woody tissue of 1.0 (±0.4) t C ha−1 yr−1. Necromass decomposition declines during drought, but mortality increases; the median mortality increase following a strong El Niño is 1.1% (n=46 tropical rainforest plots) and yields an estimated net short-term increase in necromass CO2 efflux of 0.13–0.18 t C ha−1 yr−1. Soil respiration is strongly sensitive to moisture limitation over the short term, but not to associated temperature increases. This effect is underestimated in many models but can lead to estimated reductions in CO2 efflux of 2.0 (±0.5) t C ha−1 yr−1. Thus, the majority of short-term respiratory responses to drought point to a decline in Reco, an outcome that contradicts recent regional-scale modelling of NEP. NEP varies with both GPP and Reco but robust moisture response functions are clearly needed to improve quantification of the role of Reco in influencing regional-scale CO2 emissions from Amazonia
The embedding method beyond the single-channel case: Two-mode and Hubbard chains
We investigate the relationship between persistent currents in multi-channel
rings containing an embedded scatterer and the conductance through the same
scatterer attached to leads. The case of two uncoupled channels corresponds to
a Hubbard chain, for which the one-dimensional embedding method is readily
generalized. Various tests are carried out to validate this new procedure, and
the conductance of short one-dimensional Hubbard chains attached to perfect
leads is computed for different system sizes and interaction strengths. In the
case of two coupled channels the conductance can be obtained from a statistical
analysis of the persistent current or by reducing the multi-channel scattering
problem to several single-channel setups.Comment: 14 pages, 13 figures, submitted for publicatio
Spin-dependent (magneto)transport through a ring due to spin-orbit interaction
Electron transport through a one-dimensional ring connected with two external
leads, in the presence of spin-orbit interaction (SOI) of strength \alpha and a
perpendicular magnetic field is studied. Applying Griffith's boundary
conditions we derive analytic expressions for the reflection and transmission
coefficients of the corresponding one-electron scattering problem. We
generalize earlier conductance results by Nitta et al. [Appl. Phys. Lett. 75,
695 (1999)] and investigate the influence of \alpha, temperature, and a weak
magnetic field on the conductance. Varying \alpha and temperature changes the
position of the minima and maxima of the magnetic-field dependent conductance,
and it may even convert a maximum into a minimum and vice versa.Comment: 19 pages, 9 figure
The 2-Channel Kondo Model I: Review of Experimental Evidence for its Realization in Metal Nanoconstrictions
Certain zero-bias anomalies (ZBAs) in the voltage, temperature and magnetic
field dependence of the conductance of quenched Cu point contacts
have previously been interpreted to be due to non-magnetic 2-channel Kondo
(2CK) scattering from near-degenerate atomic two-level tunneling systems (Ralph
and Buhrman, 1992; Ralph et al. 1994), and hence to represent an experimental
realization of the non-Fermi-liquid physics of the T=0 fixed point of the
2-channel Kondo model. In this, the first in a series of three papers
(I,II,III) devoted to 2-channel Kondo physics, we present a comprehensive
review of the quenched Cu ZBA experiments and their 2CK interpretation,
including new results on ZBAs in constrictions made from Ti or from metallic
glasses. We first review the evidence that the ZBAs are due to electron
scattering from stuctural defects that are not static, but possess internal
dynamics. In order to distinguish between several mechanisms proposed to
explain the experiments, we then analyze the scaling properties of the
conductance at low temperature and voltage and extract from the data a
universal scaling function . The theoretical calculation of the
corresponding scaling function within the 2CK model is the subject of papers II
and III. The main conclusion of our work is that the properties of the ZBAs,
and most notably their scaling behavior, are in good agreement with the 2CK
model and clearly different from several other proposed mechanisms.Comment: 35 pages RevTeX, 19 encapsulated postscript figures; this final
published version features two additional authors, an additional section
reviewing recent experiments on Ti nanoconstrictions that agree very well
with the 2-channel Kondo model, 6 new figures (and is much shorter the
previous 53 page version, due to reformatting
Electron transport through interacting quantum dots
We present a detailed theoretical investigation of the effect of Coulomb
interactions on electron transport through quantum dots and double barrier
structures connected to a voltage source via an arbitrary linear impedance.
Combining real time path integral techniques with the scattering matrix
approach we derive the effective action and evaluate the current-voltage
characteristics of quantum dots at sufficiently large conductances. Our
analysis reveals a reach variety of different regimes which we specify in
details for the case of chaotic quantum dots. At sufficiently low energies the
interaction correction to the current depends logarithmically on temperature
and voltage. We identify two different logarithmic regimes with the crossover
between them occurring at energies of order of the inverse dwell time of
electrons in the dot. We also analyze the frequency-dependent shot noise in
chaotic quantum dots and elucidate its direct relation to interaction effects
in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende
Fano Resonances in Electronic Transport through a Single Electron Transistor
We have observed asymmetric Fano resonances in the conductance of a single
electron transistor resulting from interference between a resonant and a
nonresonant path through the system. The resonant component shows all the
features typical of quantum dots, but the origin of the non-resonant path is
unclear. A unique feature of this experimental system, compared to others that
show Fano line shapes, is that changing the voltages on various gates allows
one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR
Formulae for zero-temperature conductance through a region with interaction
The zero-temperature linear response conductance through an interacting
mesoscopic region attached to noninteracting leads is investigated. We present
a set of formulae expressing the conductance in terms of the ground-state
energy or persistent currents in an auxiliary system, namely a ring threaded by
a magnetic flux and containing the correlated electron region. We first derive
the conductance formulae for the noninteracting case and then give arguments
why the formalism is also correct in the interacting case if the ground state
of a system exhibits Fermi liquid properties. We prove that in such systems,
the ground-state energy is a universal function of the magnetic flux, where the
conductance is the only parameter. The method is tested by comparing its
predictions with exact results and results of other methods for problems such
as the transport through single and double quantum dots containing interacting
electrons. The comparisons show an excellent quantitative agreement.Comment: 18 pages, 18 figures; to appear in Phys. Rev.
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
The Parallel Magnetoconductance of Interacting Electrons in a Two Dimensional Disordered System
The transport properties of interacting electrons for which the spin degree
of freedom is taken into account are numerically studied for small two
dimensional diffusive clusters. On-site electron-electron interactions tend to
delocalize the electrons, while long-range interactions enhance localization.
On careful examination of the transport properties, we reach the conclusion
that it does not show a two dimensional metal insulator transition driven by
interactions. A parallel magnetic field leads to enhanced resistivity, which
saturates once the electrons become fully spin polarized. The strength of the
magnetic field for which the resistivity saturates decreases as electron
density goes down. Thus, the numerical calculations capture some of the
features seen in recent experimental measurements of parallel
magnetoconductance.Comment: 10 pages, 6 figure
Coherent electron-phonon coupling and polaron-like transport in molecular wires
We present a technique to calculate the transport properties through
one-dimensional models of molecular wires. The calculations include inelastic
electron scattering due to electron-lattice interaction. The coupling between
the electron and the lattice is crucial to determine the transport properties
in one-dimensional systems subject to Peierls transition since it drives the
transition itself. The electron-phonon coupling is treated as a quantum
coherent process, in the sense that no random dephasing due to electron-phonon
interactions is introduced in the scattering wave functions. We show that
charge carrier injection, even in the tunneling regime, induces lattice
distortions localized around the tunneling electron. The transport in the
molecular wire is due to polaron-like propagation. We show typical examples of
the lattice distortions induced by charge injection into the wire. In the
tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We
also show that although lattice fluctuations modify the electron transmission
through the wire, the modifications are qualitatively different from those
obtained by the quantum electron-phonon inelastic scattering technique. Our
results should hold in principle for other one-dimensional atomic-scale wires
subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to
appear march 2001
- …