33 research outputs found

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF

    Novel Ca2+ signalling mechanisms in vascular myocytes: Symposium overview

    No full text
    This commentary presents the proceedings of the symposium sponsored by Cardiovascular Section of American Physiological Society in San Diego, CA on 12 April 2003. The major focus of this symposium was on the actions and physiological relevance of several novel Ca2+ signalling mechanisms in vascular smooth muscle (VSM) cells. Five important topics were presented in this symposium including the discovery and roles of cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) in mediating Ca 2+ release, Ca2+ sparks and activation of plasma membrane KCa channels in VSM cells, the role of cADPR-mediated activation of ryanodine receptors in the control of vascular tone, the role of [Ca 2+]i in mechano-transduction in the arterioles, and interactions of mitochondrial Ca2+ release and SR Ca2+ mobilization. The purpose of this symposium was to promote discussions and exchange of ideas between scientists with interests in Ca2+ signalling mechanisms and those with interests in vascular physiology and pharmacology. The cross-fertilization of ideas is expected to greatly advance our understanding of the physiological and pharmacological relevance of these new Ca2+ signalling mechanisms.link_to_subscribed_fulltex

    Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration (in press)

    Get PDF
    The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed
    corecore