91 research outputs found

    A Perron iteration for the solution of a quadratic vector equation arising in Markovian Binary Trees

    Full text link
    We propose a novel numerical method for solving a quadratic vector equation arising in Markovian Binary Trees. The numerical method consists in a fixed point iteration, expressed by means of the Perron vectors of a sequence of nonnegative matrices. A theoretical convergence analysis is performed. The proposed method outperforms the existing methods for close-to-critical problems

    Shift techniques for Quasi-Birth and Death processes: canonical factorizations and matrix equations

    Full text link
    We revisit the shift technique applied to Quasi-Birth and Death (QBD) processes (He, Meini, Rhee, SIAM J. Matrix Anal. Appl., 2001) by bringing the attention to the existence and properties of canonical factorizations. To this regard, we prove new results concerning the solutions of the quadratic matrix equations associated with the QBD. These results find applications to the solution of the Poisson equation for QBDs

    On Functions of quasi Toeplitz matrices

    Full text link
    Let a(z)=∑i∈Zaizia(z)=\sum_{i\in\mathbb Z}a_iz^i be a complex valued continuous function, defined for ∣z∣=1|z|=1, such that ∑i=−∞+∞∣iai∣<∞\sum_{i=-\infty}^{+\infty}|ia_i|<\infty. Consider the semi-infinite Toeplitz matrix T(a)=(ti,j)i,j∈Z+T(a)=(t_{i,j})_{i,j\in\mathbb Z^+} associated with the symbol a(z)a(z) such that ti,j=aj−it_{i,j}=a_{j-i}. A quasi-Toeplitz matrix associated with the continuous symbol a(z)a(z) is a matrix of the form A=T(a)+EA=T(a)+E where E=(ei,j)E=(e_{i,j}), ∑i,j∈Z+∣ei,j∣<∞\sum_{i,j\in\mathbb Z^+}|e_{i,j}|<\infty, and is called a CQT-matrix. Given a function f(x)f(x) and a CQT matrix MM, we provide conditions under which f(M)f(M) is well defined and is a CQT matrix. Moreover, we introduce a parametrization of CQT matrices and algorithms for the computation of f(M)f(M). We treat the case where f(x)f(x) is assigned in terms of power series and the case where f(x)f(x) is defined in terms of a Cauchy integral. This analysis is applied also to finite matrices which can be written as the sum of a Toeplitz matrix and of a low rank correction

    Palindromic matrix polynomials, matrix functions and integral representations

    Get PDF
    AbstractWe study the properties of palindromic quadratic matrix polynomials φ(z)=P+Qz+Pz2, i.e., quadratic polynomials where the coefficients P and Q are square matrices, and where the constant and the leading coefficients are equal. We show that, for suitable choices of the matrix coefficients P and Q, it is possible to characterize by means of φ(z) well known matrix functions, namely the matrix square root, the matrix polar factor, the matrix sign and the geometric mean of two matrices. Finally we provide some integral representations of these matrix functions

    The palindromic cyclic reduction and related algorithms

    Get PDF
    The cyclic reduction algorithm is specialized to palindromic matrix polynomials and a complete analysis of applicability and convergence is provided. The resulting iteration is then related to other algorithms as the evaluation/interpolation at the roots of unity of a certain Laurent matrix polynomial, the trapezoidal rule for a certain integral and an algorithm based on the finite sections of a tridiagonal block Toeplitz matrix

    General solution of the Poisson equation for Quasi-Birth-and-Death processes

    Full text link
    We consider the Poisson equation (I−P)u=g(I-P)\boldsymbol{u}=\boldsymbol{g}, where PP is the transition matrix of a Quasi-Birth-and-Death (QBD) process with infinitely many levels, g\bm g is a given infinite dimensional vector and u\bm u is the unknown. Our main result is to provide the general solution of this equation. To this purpose we use the block tridiagonal and block Toeplitz structure of the matrix PP to obtain a set of matrix difference equations, which are solved by constructing suitable resolvent triples

    From Algebraic Riccati equations to unilateral quadratic matrix equations: old and new algorithms

    Get PDF
    The problem of reducing an algebraic Riccati equation XCX−AX−XD+B=0XCX-AX-XD+B=0 to a unilateral quadratic matrix equation (UQME) of the kind PX2+QX+RPX^2+QX+R is analyzed. New reductions are introduced which enable one to prove some theoretical and computational properties. In particular we show that the structure preserving doubling algorithm of B.D.O. Anderson [Internat. J. Control, 1978] is nothing else but the cyclic reduction algorithm applied to a suitable UQME. A new algorithm obtained by complementing our reductions with the shrink-and-shift tech- nique of Ramaswami is presented. Finally, faster algorithms which require some non-singularity conditions, are designed. The non-singularity re- striction is relaxed by introducing a suitable similarity transformation of the Hamiltonian

    On the tail decay of M/G/1-type Markov renewal processes

    Get PDF
    The tail decay of M/G/1-type Markov renewal processes is studied. The Markov renewal process is transformed into a Markov chain so that the problem of tail decay is reformulated in terms of the decay of the coefficients of a suitable power series. The latter problem is reduced to analyze the analyticity domain of the power series

    Traffic lights, clumping and QBDs

    Full text link
    In discrete time, ℓ\ell-blocks of red lights are separated by ℓ\ell-blocks of green lights. Cars arrive at random. \ We seek the distribution of maximum line length of idle cars, and justify conjectured probabilistic asymptotics algebraically for 2≤ℓ≤32\leq\ell\leq3 and numerically for ℓ≥4\ell\geq4
    • …
    corecore