On the tail decay of M/G/1-type Markov renewal processes

D.A. Bini
B. Meini
V. Ramaswami

March 18, 2008

Abstract

The tail decay of M/G/1-type Markov renewal processes is studied. The Markov renewal process is transformed into a Markov chain so that the problem of tail decay is reformulated in terms of the decay of the coefficients of a suitable power series. The latter problem is reduced to analyze the analyticity domain of the power series.

1 Introduction

Consider a Markov Renewal Process (MRP) $\left(X_{n}, \tau_{n}\right)_{n}$ of M/G/1-type on the state space $E=\{(i, j, x): \quad i \geq 0,1 \leq j \leq m, x \geq 0\}$ defined by the kernel

$$
K(x)=\left[\begin{array}{ccccc}
\widetilde{B}_{0}(x) & \widetilde{B}_{1}(x) & \widetilde{B}_{2}(x) & \widetilde{B}_{3}(x) & \ldots \\
\widetilde{A}_{-1}(x) & \widetilde{A}_{0}(x) & \widetilde{A}_{1}(x) & \widetilde{A}_{2}(x) & \ldots \\
& \widetilde{A}_{-1}(x) & \widetilde{A}_{0}(x) & \widetilde{A}_{1}(x) & \ddots \\
& & \widetilde{A}_{-1}(x) & \widetilde{A}_{0}(x) & \ddots \\
0 & & & \ddots & \ddots
\end{array}\right], \quad x \geq 0,
$$

where the $m \times m$ matrices $\widetilde{A}_{k}(x)$ and $\widetilde{B}_{k}(x)$ are defined as follows:

$$
\begin{aligned}
& \widetilde{A}_{k}(x)=P\left\{X_{n+1} \in \ell_{i+k}, \tau_{n+1}-\tau_{n} \leq x \mid X_{0}, \ldots, X_{n}\right. \\
& \left.\tau_{0}, \ldots, \tau_{n}, X_{n} \in \ell_{i}, i \geq 1\right\}, \quad k \geq-1 \\
& \widetilde{B}_{k}(x)=P\left\{X_{n+1} \in \ell_{k}, \tau_{n+1}-\tau_{n} \leq x \mid X_{0}, \ldots, X_{n}\right. \\
& \left.\tau_{0}, \ldots, \tau_{n}, X_{n} \in \ell_{0}\right\}, \quad k \geq 0
\end{aligned}
$$

Here ℓ_{i}, for $i=0,1, \ldots$, denotes the i-th level, i.e., the set of pairs $\{(i, j), \quad j=$ $1, \ldots, m\}$.

For $n \geq 0$ let $\widetilde{G}(n, x)$ be the probability that in n steps and in time at most x the system goes from level ℓ_{1} to level ℓ_{0}.

An important issue arising in the applications is the analysis of the speed of convergence to zero of the sequence $\{\widetilde{G}(n, x)\}_{n}$, as n tends to infinity, or in
other words, the analysis of the tail decay of the sequence $\{\widetilde{G}(n, x)\}_{n}$. In order to simplify the problem, one may apply the Laplace-Stiltjes transform to $\widetilde{A}_{k}(x)$ and to $\widetilde{G}(n, x)$, by defining

$$
\begin{aligned}
& A_{n}(s)=\int_{0}^{\infty} e^{-s x} \widetilde{A}_{n}(d x), \quad n \geq-1 \\
& G(w, s)=\sum_{n=1}^{\infty} w^{n} \int_{0}^{\infty} e^{-s x} \widetilde{G}(n, d x), \quad s \in \mathbb{C}^{+} 0
\end{aligned}
$$

In this way, one finds that

$$
G(w, s)=w \sum_{n=-1}^{\infty} A_{n}(s) G(w, s)^{n+1}, \quad|w| \leq 1, s \in \mathbb{C}^{+}
$$

Now, let us define

$$
\begin{aligned}
& G(w)=\lim _{s \rightarrow 0^{+}} G(w, s), \quad|w| \leq 1, \\
& A_{n}=\lim _{s \rightarrow 0^{+}} A_{n}(s), \quad n \geq-1
\end{aligned}
$$

It is proved in [4] that the matrices A_{n} for $n \geq-1$ are nonnegative, and that $\sum_{n=-1}^{\infty} A_{n}$ is a stochastic matrix. Therefore, the matrices A_{n} define the homogeneous part of the transition matrix of an M/G/1-type Markov chain. Moreover, the matrix $G(w)$ solves the matrix equation

$$
G(w)=w \sum_{n=-1}^{\infty} A_{n} G(w)^{n+1}
$$

and $|G(w, s)| \leq|G(w)|$ for any $s \in \mathbb{C}^{+}$. It is known (see [4]) that, if $0 \leq w \leq 1$, the matrix $G(w)$ is the minimal nonnegative solution of the matrix equation

$$
X=w \sum_{n=-1}^{\infty} A_{n} X^{n+1}
$$

Moreover, the function $G(w)$ is analytic for $|w|<1$ and its power series expansion $G(w)=\sum_{n=0}^{\infty} w^{n} G_{n}$, is such that $G_{n} \geq 0$ for any $n \geq 0$, and is convergent for $|w|=1$. The coefficients G_{n} have the following probabilistic interpretation: G_{n} is the probability that in n steps the system goes from level ℓ_{1} to level ℓ_{0}.

Our goal is to estimate the decay rate of the coefficients G_{n} of the power series $G(w)$. From a classical result in complex analysis [3, Theorem 2.2f], if $r>1$ is the convergence radius of $G(w)$, then for any matrix norm, one has $\left\|G_{n}\right\|=O\left(\theta^{n}\right)$ for any θ such that $1 / r<\theta<1$. Therefore, our problem is reduced to estimating the convergence radius of $G(w)$.

We prove that, under suitable mild assumptions, the matrix power series $G(w)$ is analytic for $|w|<R$ and convergent for $|w| \leq R$. Here $R=\sigma / \theta(\sigma)$, where σ is the unique solution of the equation $\theta^{\prime}(z) z=\theta(z)$ in the interval $\left(0, r_{a}\right)$, where $r_{a}>1$ is the convergence radius of $A(z)=\sum_{n=-1}^{+\infty} z^{n+1} A_{n}$ and $\theta(z)$ is the spectral radius of $A(z)$.

The numerical value of R can be computed by relying on any effective iterative algorithm for solving a nonlinear scalar equation where at each step of the iteration the spectral radius of $A(z)$ must be computed together with its derivative.

2 Tail decay analysis

In this section we study the tail decay of the matrix power series $G(w)=$ $\sum_{n=0}^{\infty} w^{n} G_{n}$. We recall that $G(w)$, for $|w| \leq 1$, solves the matrix equation

$$
\begin{equation*}
X=w \sum_{n=-1}^{\infty} A_{n} X^{n+1} \tag{1}
\end{equation*}
$$

Moreover, $G_{0}=0, G_{n} \geq 0$ for any $n \geq 1$ and, if $0<w \leq 1, G(w)$ is the minimal nonnegative solution of (1).

We denote by r_{a} the convergence radius of the matrix power series $A(z)=$ $\sum_{n=-1}^{+\infty} z^{n+1} A_{n}$, and we assume that the matrix $A(1)$ is irreducible and stochastic. We will denote by $\theta(z)$ the spectral radius of $A(z)$. It is proved in [2, Lemma 1] that, since $A(1)$ is irreducible, $\theta(z)$ is a real analytic function for $0<z<r_{a}$. Moreover, $\theta(z)$ is strictly increasing for $0<z<r_{a}$.

The tail decay analysis of $G(w)$ is performed by estimating the speed of convergence to zero of G_{n} as $n \rightarrow \infty$. To do this, we determine the analyticity domain of $G(w)$ on the complex plane. Indeed, from a classical result on analytic functions (see [3, Theorem 2.2f]), if $G(w)$ is analytic for $|w|<R$, where $R>1$, then $\left\|G_{n}\right\|=O\left(\sigma^{n}\right)$ for any $1 / R<\sigma<1$ and for any matrix norm.

Define the scalar function

$$
\phi_{w}(z)=w \theta(z), \quad w \in \mathbb{C}
$$

and recall that the drift of an M/G/1-type Markov chain is defined by $\mu=\boldsymbol{\alpha}^{T} \boldsymbol{a}$, where $\boldsymbol{\alpha}^{T}$ is the stationary probability vector of $A(1), \boldsymbol{a}=\sum_{n=-1}^{+\infty} n A_{n} \boldsymbol{e}$, and e is the vector of all ones.

We assume throughout that one of the following two conditions holds:

1. $\mu \geq 0$
2. $\mu<0, r_{a}>1$ and $\operatorname{det}(A(z)-z I)$ has a zero outside the closed unit disk.

We prove the following
Proposition 1. The following properties hold:

1. the equation $z \theta^{\prime}(z)=\theta(z)$ has a unique solution σ in $\left(0, r_{a}\right)$;
2. the equation $\phi_{w}(z)=z$ has:

- a solution of multiplicity two in $\left(0, r_{a}\right)$ if $w=\sigma / \theta(\sigma)$,
- two distinct solutions in $\left(0, r_{a}\right)$ for any $0<w<\sigma / \theta(\sigma)$.

Proof. Define the function $f_{w}(t)=\log \phi_{w}\left(e^{t}\right)-t$, for $-\infty<t<\log r_{a}$. In [2] it is shown that the function $\log \theta\left(e^{t}\right)$, for $-\infty<t<\log r_{a}$ is a convex increasing function of t. Moreover, according to the results of [2], the equation $f_{1}(t)=0$ has in $\left(-\infty, \log r_{a}\right)$: two distinct solutions $t_{1}<0$ and $t_{2}=0$ if $\mu>0$, a solution of multiplicity two in $t=0$ if $\mu=0$, two distinct solutions $t_{1}=0$ and $t_{2}>0$

Figure 1: Plot of the function $\phi_{w}(z)-z$ for different values of w, case $\mu<0$
if $\mu<0$. In all the cases, for convexity, the function $f_{1}(t)=\log \left(\theta\left(e^{t}\right)\right)-t$ has a unique global minimum $t_{1} \leq t^{*} \leq t_{2}$ in $-\infty<t<\log r_{a}$. Moreover, t^{*} is the unique solution to the equation $f_{1}^{\prime}(t)=0$ in $\left(-\infty, \log r_{a}\right)$. By computing the derivative, we find that t^{*} is the unique solution to $e^{t} \theta^{\prime}\left(e^{t}\right)=\theta\left(e^{t}\right)$ in $\left(-\infty, \log r_{a}\right)$. By setting $\sigma=e^{t^{*}}$, we conclude that σ is the unique solution to $z \theta^{\prime}(z)=\theta(z)$ in the interval $\left(0, r_{a}\right)$. Concerning the second part, observe that $\phi_{w}(z)=z$ has a solution in $0<z<r_{a}$ if and only if the equation $f_{w}(t)=0$ has a solution in $-\infty<t<\log r_{a}$. Since $f_{w}(t)=f_{1}(t)+\log w$, the equation $f_{w}(t)=0$ has a solution of multiplicity two if $f_{w}\left(t^{*}\right)=0$, two distinct solutions if $f_{w}\left(t^{*}\right)<0$. Since $\sigma=e^{t^{*}}$, one finds that $f_{w}\left(t^{*}\right)=1 / \theta^{\prime}(\sigma)=\sigma / \theta(\sigma)$.

Figure 1 shows the behaviour of the function $\phi_{w}(z)-z$ for different values of w.

By Proposition 1, if $0<w \leq R$, the equation $\phi_{w}(z)=z$ has at least a solution in $\left(0, r_{a}\right)$. Let us donote by $\xi(w)$ the smallest $\xi(w) \in\left(0, r_{a}\right)$ such that $\phi_{w}(\xi(w))=\xi(w)$. Since $A(1)$ is irreducible, also $A(\xi(w))$ is irreducible and by the Perron-Frobenius theorem [1], there exists a positive vector $\boldsymbol{v}(w)$ such that $w A(\xi(w)) \boldsymbol{v}(w)=\xi(w) \boldsymbol{v}(w)$.
Proposition 2. Consider the matrix sequence $X^{(k)}(w)$ defined by

$$
\begin{equation*}
X^{(k+1)}(w)=w \sum_{n \geq-1} A_{n}\left(X^{(k)}(w)\right)^{n+1}, \quad k \geq 0 \tag{2}
\end{equation*}
$$

with $X^{(0)}(w)=0$. Then:

1. $X^{(k)}(w)$ is analytic for $|w|<R$ and convergent for $|w|=R$, where $R=$ $\sigma / \theta(\sigma)$;
2. $X^{(k)}(w)=\sum_{n=0}^{k} w^{n} G_{n}+\sum_{n=k+1}^{\infty} w^{n} E_{n}^{(k)}$;
3. if $0<w \leq R$, then $0 \leq X^{(k)}(w) \leq X^{(k+1)}(w)$ and $X^{(k)}(w) \boldsymbol{v}(w) \leq$ $\xi(w) \boldsymbol{v}(w)$ for any $k \geq 0$;
4. the sequence $\left\{X^{(k)}(w)\right\}_{k}$ converges uniformly to $G(w)$ in any closed disk $\{|w| \leq r\}$, with $0<r \leq R$.

Proof. The analyticity of $X^{(k)}(w)$ is proved by induction on k. More specifically, we prove that, for any $k \geq 0, X^{(k)}(w)$ is a matrix power series in w with nonnegative matrix coefficients, and that $X^{(k)}(R) \boldsymbol{v}(R) \leq \xi(R) \boldsymbol{v}(R)$. For the nonnegativity of the matrix coefficients and for the positivity of $\boldsymbol{v}(R)$, this latter property implies that $X^{(k)}(w)$ is analytic for $|w|<R$ and convergent for $|w|=R$. For $k=0$ then $X^{(k)}(w)=0$ and therefore the property trivially holds. Assume that $X^{(k)}(w)$ is a power series with nonnegative matrix coefficients such that $X^{(k)}(R) \boldsymbol{v}(R) \leq \xi(R) \boldsymbol{v}(R)$. Then $X^{(k+1)}(w)$ is a formal matrix power series, since $X^{(k+1)}(w)=w A\left(X^{(k)}(w)\right)$, where $A(z)=\sum_{n \geq-1} A_{n} z^{n+1}$; moreover the matrix coefficients of $X^{(k+1)}(w)$ are an infinite sum of nonnegative matrices since $A_{n} \geq 0$ for any $n \geq-1$. Observe that, by inductive hypothesis, one has

$$
\begin{array}{r}
X^{(k+1)}(R) \boldsymbol{v}(R)=R \sum_{n \geq-1} A_{n}\left(X^{(k)}(R)\right)^{n+1} \boldsymbol{v}(R) \leq \\
R \sum_{n \geq-1} \xi(R)^{n+1} A_{n} \boldsymbol{v}(R)=\xi(R) \boldsymbol{v}(R),
\end{array}
$$

hence $X^{(k+1)}(R) \boldsymbol{v}(R) \leq \xi(R) \boldsymbol{v}(R)$.
Let us prove Part 2. For $|w| \leq 1$ let $E^{(k)}(w)=X^{(k)}(w)-G(w)$. We prove by induction on k that $E^{(k)}(w)=\sum_{n=k+1}^{\infty} w^{n} E_{n}^{(k)}$. If $k=0$ one has $E^{(0)}(w)=X^{(0)}(w)-G(w)=\sum_{n=1}^{\infty} w^{n} G_{n}$, since $G_{0}=X^{(0)}(w)=0$, therefore the property holds. Assume that $E^{(k)}(w)=\sum_{n=k+1}^{\infty} w^{n} E_{n}^{(k)}$. One has

$$
E^{(k+1)}(w)=w \sum_{n \geq-1} A_{n}\left(\left(X^{(k)}(w)\right)^{n+1}-G(w)^{n+1}\right)
$$

By using the identity $X^{n}-Y^{n}=\sum_{i=0}^{n-1} X^{i}(X-Y) Y^{n-i-1}, n \geq 1$, from the latter equation we obtain

$$
E^{(k+1)}(w)=w \sum_{n \geq-1} A_{n} \sum_{i=0}^{n}\left(X^{(k)}(w)\right)^{i} E^{(k)}(w) G(w)^{n-i}
$$

Therefore $E^{(k+1)}(w)=\sum_{n=k+2}^{\infty} w^{n} E_{n}^{(k+1)}$ for suitable matrix coefficients $E_{n}^{(k+1)}$.
Part 3 can be easily proved by induction on k.
Concerning Part 4 , let $0<r \leq R$ and let $\|\cdot\|_{1}$ be the 1-norm. Since the matrix coefficients of $E^{(k)}(w)$ are nonnegative, one has

$$
\sup _{|w| \leq r}\left\|E^{(k)}(w)\right\|_{1}=\sup _{|w| \leq r}\left\|\sum_{n=k+1}^{\infty} w^{n} E_{n}^{(k)}\right\|_{1}=\left\|\sum_{n=k+1}^{\infty} r^{n} E_{n}^{(k)}\right\|_{1}
$$

and the latter quantity converges to zero as $k \rightarrow \infty$.

Figure 2: Convergence radius of $G(w)$ for Example 1, as a function of λ

Theorem 3. The matrix function $G(w)$ is analytic for $|w|<R$ and convergent for $|w| \leq R$, where $R=\sigma / \theta(\sigma)$ and σ is defined in Proposition 1. Morever, if $0<w \leq R$, then the spectral radius of $G(w)$ is $\xi(w)$.

Proof. $G(w)$ is a power series with nonnegative matrix coefficients, therefore it is sufficient to prove that $G(R)$ is bounded. This latter fact follows from Proposition 2, since the sequence $\left\{X^{(k)}(R)\right\}_{k}$ is bounded and convergent to $G(R)$. In order to prove that $\rho(G(w))=\xi(w)$, we consider the matrix $B(w)=$ $D^{-1} G(w) D$, where $D=\operatorname{Diag}(\boldsymbol{v}(w))$ and $\boldsymbol{v}(w)$ is a positive vector such that $G(w) \boldsymbol{v}(w)=\xi(w) \boldsymbol{v}(w)$. It easily follows that $B(w) \boldsymbol{e}=\xi(w) \boldsymbol{e}$, this implies that $\|B(w)\|_{\infty}=\xi(w)$. Since $\rho(B(w)) \leq\|B(w)\|_{\infty}=\xi(w)$, and since $\xi(w)$ is an eigenvalue of $B(w)$ one has $\rho(G(w))=\rho(B(w))=\xi(w)$.

From the proof of Proposition 1, the unique solution σ in $\left(0, r_{a}\right)$ of the equation $z \theta^{\prime}(z)=\theta(z)$ is $\sigma=e^{t^{*}}$, where t^{*} is the global minimum of the function $f_{1}(t)=\log \left(\theta\left(e^{t}\right)\right)-t$ in $\left(-\infty, \log r_{a}\right)$. Morever $t_{1}<t^{*}<t_{2}$ if $\mu \neq 0$, and $t^{*}=t_{1}=t_{2}$ if $\mu=0$, where t_{1} and t_{2} are the solutions to the equation $f_{1}(t)=0$ in $\left(-\infty, \log r_{a}\right)$.

Example 1. Consider the simple scalar case of a Poisson distribution of parameter $\lambda>0$, where $A_{n}=e^{-\lambda} \frac{\lambda^{n+1}}{(n+1)!}$, for $n \geq-1$. We may verify that $G(w)=\sum_{i=1}^{\infty} w^{i} e^{i(1-\lambda)} \lambda^{i-1}$, therefore the convergence radius of $G(w)$ is $R_{G}=$ $\frac{e^{\lambda-1}}{\lambda}$. Since $A(z)$ is a scalar function, $\theta(z)=A(z)=e^{\lambda(z-1)}$, and the equation $z \theta^{\prime}(z)=\theta(z)$ becomes $\lambda z e^{\lambda(z-1)}=e^{\lambda(z-1)}$, therefore $\sigma=\lambda^{-1}$. According to Theorem $3 R=\sigma / \theta(\sigma)=\lambda^{-1} / A\left(\lambda^{-1}\right)$, which coincides with R_{G}. Figure 2 illustrates the convergence radius of $G(w)$ as a function of λ : we observe that for $\lambda=1$ (the null recurrent case) the radius is minimum, and equal to 1 , while it diverges as $\lambda \rightarrow 0$ and $\lambda \rightarrow+\infty$.

References

[1] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.
[2] H. R. Gail, S. L. Hantler, and B. A. Taylor. Matrix-geometric invariant measures for $G / M / 1$ type Markov chains. Comm. Statist. Stochastic Models, 14(3):537-569, 1998
[3] P. Henrici. Applied and computational complex analysis. Vol. 1. Wiley Classics Library. John Wiley \& Sons Inc., New York, 1988. Power seriesintegration - conformal mapping-location of zeros, Reprint of the 1974 original, A Wiley-Interscience Publication.
[4] M. F. Neuts. Moment formulas for the Markov renewal branching process. Advances in Appl. Probability, 8(4):690-711, 1976.

