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Abstract

The tail decay of M/G/1-type Markov renewal processes is studied.
The Markov renewal process is transformed into a Markov chain so that
the problem of tail decay is reformulated in terms of the decay of the
coefficients of a suitable power series. The latter problem is reduced to
analyze the analyticity domain of the power series.

1 Introduction

Consider a Markov Renewal Process (MRP) (X,,, 7)n of M/G/1-type on the
state space E = {(i,j,z): ¢>0, 1 <j<m, x>0} defined by the kernel

[ Bo(x) Bi(z) Ba(z) Bs(x) |
A@) Aolz) Auz) As(a)
K(z) = Ai(x) Ay(z) Ai(x) , x>0,
Ay (z) Ay(z)
0 S

where the m x m matrices Ag(z) and By(z) are defined as follows:

gk(x) = P{Xnt1 € lisk, Tny1 — T < 2| Xo,..., Xp,
7-07'-'77-717Xn € gia 12> ]-}7 k> -1,

Bi(x) = P{Xp11 € by, Tn1 — o < 7 Xo,. -, X,
Tore oy Toy X € Lo}, k> 0.

Here ¢;, for i = 0,1,..., denotes the i-th level, i.e., the set of pairs {(i,7), Jj=
1,...,m}.

For n >0 let G (n,z) be the probability that in n steps and in time at most
x the system goes from level ¢; to level £g.

An important issue arising in the applications is the analysis of the speed
of convergence to zero of the sequence {G(n,x)},, as n tends to infinity, or in
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other words, the analysis of the tail decay of the sequence {C~¥ (n,z)}p. In order
to simplify the problem, one may apply the Laplace-Stiltjes transform to Ay(x)
and to G(n,z), by defining

An(s) = [T e " A, (dx), n> -1,
Gw,s) =07 w™ [[7 e G (n,dz), se CT0.
In this way, one finds that

G(w,s) =w Z An(s)G(w, )", |w| <1,s€ CT.

n=-—1
Now, let us define
G(’LU) = lirns—»O+ G(wu 8)7 |’U}| < 17
A, = limg_, o+ An(s)v n > —1.

It is proved in [4] that the matrices A4, for n > —1 are nonnegative, and that
22171 A, is a stochastic matrix. Therefore, the matrices A,, define the homoge-
neous part of the transition matrix of an M/G/1-type Markov chain. Moreover,

the matrix G(w) solves the matrix equation

Gw)=w Y A,G(w)"*!
n=-—1
and |G(w, s)| < |G(w)| for any s € C*. It is known (see [4]) that, if 0 <w <1,
the matrix G(w) is the minimal nonnegative solution of the matrix equation

X =w i A, X"

n=-—1

Moreover, the function G(w) is analytic for |w| < 1 and its power series expan-
sion G(w) = Y77 ;w" Gy, is such that G, > 0 for any n > 0, and is convergent
for |w| = 1. The coefficients G,, have the following probabilistic interpretation:
G, is the probability that in n steps the system goes from level /1 to level £;.

Our goal is to estimate the decay rate of the coefficients GG,, of the power
series G(w). From a classical result in complex analysis [3, Theorem 2.2f], if
r > 1 is the convergence radius of G(w), then for any matrix norm, one has
IGrl| = O(0™) for any 0 such that 1/r < 6 < 1. Therefore, our problem is
reduced to estimating the convergence radius of G(w).

We prove that, under suitable mild assumptions, the matrix power series
G(w) is analytic for |w| < R and convergent for |w| < R. Here R = ¢ /6(0),
where ¢ is the unique solution of the equation #'(z)z = 6(z) in the interval
(0,74), where 7, > 1 is the convergence radius of A(z) = 3> 2"*+14, and
0(z) is the spectral radius of A(z).

The numerical value of R can be computed by relying on any effective it-
erative algorithm for solving a nonlinear scalar equation where at each step of
the iteration the spectral radius of A(z) must be computed together with its
derivative.



2 Tail decay analysis

In this section we study the tail decay of the matrix power series G(w) =
Yoo o w"Gp. We recall that G(w), for |w| < 1, solves the matrix equation

X =w Z A, X" (1)

Moreover, Gg =0, G, > 0 for any n > 1 and, if 0 < w < 1, G(w) is the minimal
nonnegative solution of (1).
We denote by r, the convergence radius of the matrix power series A(z) =
¥o¢  2"F1 A, and we assume that the matrix A(1) is irreducible and stochas-
tic. We will denote by 6(z) the spectral radius of A(z). It is proved in [2, Lemma
1] that, since A(1) is irreducible, 6(z) is a real analytic function for 0 < z < 7.
Moreover, 6(z) is strictly increasing for 0 < z < r,.

The tail decay analysis of G(w) is performed by estimating the speed of
convergence to zero of G, as n — co. To do this, we determine the analyticity
domain of G(w) on the complex plane. Indeed, from a classical result on analytic
functions (see [3, Theorem 2.2f]), if G(w) is analytic for |w| < R, where R > 1,
then ||G, || = O(c™) for any 1/R < ¢ < 1 and for any matrix norm.

Define the scalar function

duw(z) =wl(z), weC,

and recall that the drift of an M/G/1-type Markov chain is defined by 4 = o’ a,
where ' is the stationary probability vector of A(1), a = E:io_l nApe, and
e is the vector of all ones.

We assume throughout that one of the following two conditions holds:

1. pn>0
2. 4 <0, 7, >1and det(A(z) — zI) has a zero outside the closed unit disk.
We prove the following
Proposition 1. The following properties hold:
1. the equation z8'(z) = 0(z) has a unique solution o in (0,74);
2. the equation ¢, (z) = z has:

e q solution of multiplicity two in (0,r4) if w =0 /0(0),

o two distinct solutions in (0,74) for any 0 < w < o/0(0).

Proof. Define the function f,,(t) = log ¢ (e!) —t, for —co < t < logr,. In [2] it
is shown that the function logf(e'), for —oo < t < logr, is a convex increasing
function of t. Moreover, according to the results of [2], the equation fi(t) = 0
has in (—oo,logr,): two distinct solutions ¢ < 0 and ¢t2 = 0 if u > 0, a solution
of multiplicity two in ¢ = 0 if p = 0, two distinct solutions ¢t; = 0 and t2 > 0
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Figure 1: Plot of the function ¢,,(z) — z for different values of w, case p < 0

if u < 0. In all the cases, for convexity, the function fi(t) = log(6(e?)) — ¢ has
a unique global minimum ¢; < t* < t3 in —oco < t < logr,. Moreover, t* is
the unique solution to the equation f{(t) = 0 in (—oo,logr,). By computing
the derivative, we find that ¢* is the unique solution to e'¢’(e’) = 6(e') in
(—o0,logry). By setting o = e'”, we conclude that o is the unique solution to
20'(z) = 6(z) in the interval (0,r,). Concerning the second part, observe that
¢w(z) = z has a solution in 0 < z < 7, if and only if the equation f,(¢t) = 0
has a solution in —oco < t < logr,. Since f,(t) = f1(t) + logw, the equation
fw(t) = 0 has a solution of multiplicity two if f,,(¢*) = 0, two distinct solutions
if f,,(t*) < 0. Since o = e, one finds that f,,(t*) = 1/60'(c) = 0/0(0). O

Figure 1 shows the behaviour of the function ¢, (z) — z for different values
of w.

By Proposition 1, if 0 < w < R, the equation ¢, (z) = z has at least a
solution in (0,7,). Let us donote by &(w) the smallest {(w) € (0,7,) such that
dw(€(w)) = &(w). Since A(1) is irreducible, also A(&(w)) is irreducible and by
the Perron-Frobenius theorem [1], there exists a positive vector v(w) such that

wA(§(w))v(w) = E(w)v(w).
Proposition 2. Consider the matriz sequence X *)(w) defined by

XEDw) —w 3 A XD @), k=0, @

n>—1

with X(©) (w) = 0. Then:

1. X®)(w) is analytic for |w| < R and convergent for |lw| = R, where R =

o/0(c);
(k) _\k n o n (k)
2. XW(w) =3 _qw"Gn+ > " wEy”;

8 if0 < w < R, then 0 < XP(w) < XFD(w) and X® (w)v(w) <
E(w)v(w) for any k > 0;



4. the sequence {X ¥ (w)}y converges uniformly to G(w) in any closed disk
{Jw] <r}, with 0 <r < R.

Proof. The analyticity of X *)(w) is proved by induction on k. More specifically,
we prove that, for any k& > 0, X*)(w) is a matrix power series in w with
nonnegative matrix coefficients, and that X (R)v(R) < ¢(R)v(R). For the
nonnegativity of the matrix coefficients and for the positivity of v(R), this
latter property implies that X (®)(w) is analytic for |w| < R and convergent for
|w| = R. For k = 0 then X*)(w) = 0 and therefore the property trivially holds.
Assume that X *)(w) is a power series with nonnegative matrix coefficients such
that X ) (R)v(R) < £(R ) ( ). Then X *+1 (w) is a formal matrix power series,
since X *+D(w) = wA(X® (w)), where A(z) = >, ; Anz"T; moreover the

matrix coefficients of X (*+1)(w) are an infinite sum of nonnegative matrices
since A,, > 0 for any n > —1. Observe that, by inductive hypothesis, one has

X(’f“)(R)v(R) —R Z An(X(k)(R))n-i-l,v(R) <
n>—1
R 37 &R Avw(R) = E(R)o(R),
n>—1
hence X **+D(R)v(R) < £(R)v(R).

Let us prove Part 2. For |w| < 1 let E® (w) = X®(w) — G(w). We
prove by induction on k that E®)(w) = 5707, wEX . If k& = 0 one has
EO(w) = XO(w) — G(w) = 307, w"G,, since Gy = X(O)( ) = 0, therefore
the property holds. Assume that E®) (w) =327, w"EX) . One has

E k+1 = w Z A )n-i-l _ G(w)n-i-l)

n>—1

By using the identity X™ — =3 ' XX —Y)Y"i7l n > 1, from the
latter equation we obtain

EF D) (w) = w Z A, Z X () E® (w)G(w) .

n>—1 i=0

Therefore E® D (w) =35>, w" BTV for suitable matrix coefficients ES .
Part 3 can be easily proved by induction on k.
Concerning Part 4, let 0 < » < R and let || - |1 be the 1-norm. Since the
matrix coefficients of E*)(w) are nonnegative, one has

o0 oo
sup [E® ()l = sup | 3 wrE®| = | 35 mp®
‘w‘ST ‘w‘—r n=k+1 1 n=k+1 1
and the latter quantity converges to zero as k — oo. O



Figure 2: Convergence radius of G(w) for Example 1, as a function of A

Theorem 3. The matriz function G(w) is analytic for |lw| < R and convergent
for |w| < R, where R = o/0(c) and o is defined in Proposition 1. Morever, if
0 < w < R, then the spectral radius of G(w) is &(w).

Proof. G(w) is a power series with nonnegative matrix coefficients, therefore
it is sufficient to prove that G(R) is bounded. This latter fact follows from
Proposition 2, since the sequence {X*(R)}, is bounded and convergent to
G(R). In order to prove that p(G(w)) = {(w), we consider the matrix B(w) =
D~ 'G(w)D, where D = Diag(v(w)) and v(w) is a positive vector such that
G(w)v(w) = E(w)v(w). Tt easily follows that B(w)e = &(w)e, this implies that
[|B(w)||oo = &(w). Since p(B(w)) < ||B(w)||leo = £(w), and since £(w) is an
eigenvalue of B(w) one has p(G(w)) = p(B(w)) = &(w). O

From the proof of Proposition 1, the unique solution o in (0,7,) of the
equation 20'(z) = 6(z) is 0 = €', where t* is the global minimum of the
function fi(¢t) = log(f(e)) — t in (—oo,logr,). Morever t; < t* < t5 if p # 0,
and t* = t; = ¢y if p = 0, where ¢; and ¢y are the solutions to the equation
f1(t) =0 in (—oo,logr,).

Example 1. Consider the simple scalar case of a Poisson distribution of pa-

rameter A\ > 0, where A, = e*)‘(i‘lnTT)!, for n > —1. We may verify that

G(w) = Y72, w'e' "ML therefore the convergence radius of G(w) is Rg =
etl. Since A(z) is a scalar function, 0(z) = A(z) = e**~1 | and the equation

20'(z) = 0(z) becomes A\zer*=1) = A== therefore o0 = A~!. According to
Theorem 3 R = 0/0(c) = A\"1/A(A\™1), which coincides with Rg. Figure 2
illustrates the convergence radius of G(w) as a function of A\: we observe that
for A =1 (the null recurrent case) the radius is minimum, and equal to 1, while
it diverges as A — 0 and A — +o0.
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