research

General solution of the Poisson equation for Quasi-Birth-and-Death processes

Abstract

We consider the Poisson equation (IP)u=g(I-P)\boldsymbol{u}=\boldsymbol{g}, where PP is the transition matrix of a Quasi-Birth-and-Death (QBD) process with infinitely many levels, g\bm g is a given infinite dimensional vector and u\bm u is the unknown. Our main result is to provide the general solution of this equation. To this purpose we use the block tridiagonal and block Toeplitz structure of the matrix PP to obtain a set of matrix difference equations, which are solved by constructing suitable resolvent triples

    Similar works