291 research outputs found
SHADE AVOIDANCE 4 is required for proper auxin distribution in the hypocotyl
The phytohormone auxin is involved in virtually every aspect of plant growth and development. Through polar auxin transport, auxin gradients can be established, which then direct plant differentiation and growth. Shade avoidance responses are well- known processes that require polar auxin transport. In this study, we have identified a mutant, shade avoidance 4 (sav4), defective in shade-induced hypocotyl elongation and basipetal auxin transport. SAV4 encodes an unknown protein with armadillo repeat- and tetratricopeptide repeat-like domains known to provide protein-protein interaction surfaces. C terminally yellow fluorescent protein-tagged SAV4 localizes to both the plasma membrane and the nucleus. Membrane-localized SAV4 displays a polar association with the shootward plasma membrane domain in hypocotyl and root cells, which appears to be necessary for its function in hypocotyl elongation. Cotransfection of SAV4 and ATP-binding cassette B1 (ABCB1) auxin transporter in tobacco (Nicotiana benthamiana) revealed that SAV4 blocks ABCB1-mediated auxin efflux. We thus propose that polarly localized SAV4 acts to inhibit ABCB-mediated auxin efflux toward shoots and facilitates the establishment of proper auxin gradients
Association between daytime nap duration and risks of frailty: Findings from the China Health and Retirement Longitudinal Study
IntroductionNight sleep duration and total sleep duration are associated with frailty. However, the association between daytime nap duration and the risks of frailty has not been explored thoroughly.MethodsThis study used data from the China Health and Retirement Longitudinal Study (CHARLS). Participants aged 60 years and older at baseline were included in this study. Individuals with daytime nap duration were categorized into four groups: no napping, short napping (< 30 min), moderate napping (30–89 min), and extended napping (≥90 min). Frailty was assessed using a modified Physical Frailty Phenotype (PFP) scale. Non-frail participants at baseline were followed up for 4 years. The association between nap duration and risks of frailty at baseline and incident frailty was evaluated by logistic regression and discrete-time Cox regression analyses, respectively.ResultsIn total, 5,126 participants were included in this study. For individuals with night sleep duration of ≥9 h, short nappers showed higher odds [odds ratio (OR) = 4.08, 95% confidence interval (CI): 1.30–12.78] for frailty compared with non-habitual nappers at baseline, while moderate nappers were less likely to be frail (OR = 0.18, 95% CI: 0.04–0.73). In the follow-up study, short nappers showed higher risks for frailty compared with participants of the no napping group with night sleep duration of < 6 h [hazard ratio (HR) = 1.91, 95% CI: 1.07–3.43] or 6–9 h (HR = 1.97, 95% CI: 1.18–3.30). Compared with short nappers, older adults with extended napping (HR = 0.41, 95% CI: 0.22–0.77) showed lower risks for frailty in those with night sleep duration of 6–9 h. For individuals with night sleep duration of ≥9 h, moderate napping (HR = 0.20, 95% CI: 0.05–0.77) decreased the risks for frailty compared with short napping.ConclusionAmong older adults with night sleep duration of < 9 h, short nappers posed higher risks for frailty compared with non-habitual nappers. Extended naps for those with a night sleep duration of 6–9 h or moderate naps for those with night sleep duration of ≥9 h could lower the risk of frailty compared with short naps. Future studies on the timing, purpose, frequency, and quality of daytime napping and objectively measured nap duration are needed to explore the association between daytime napping and risks of frailty
Deep semantic-dependence proxy hashing with global and spatial informative embedding for multi-label remote sensing image retrieval
With the speedy advancement of Convolutional Neural Networks (CNNs), deep hashing is extremely significant in remote sensing image retrieval scenarios due to the low storage cost and quick searching speed. However, under multi-label remote sensing retrieval scenarios, conventional proxy-based methods only consider the dependency relationships between proxies and samples while neglecting semantic relations among data points. This limitation fails to convey complex label correlations and causes conflicts in the embedding space. Besides, current remote sensing image retrieval frameworks tend to utilize global descriptors to characterize the image and hardly reflect the local spatial information associated with multi-label semantics, which further impedes the feature representation capability. To resolve the mentioned problems, a new Deep Semantic-dependence Proxy Hashing Framework (DSdPH) is proposed to improve the efficiency of model retrieval in multi-label remote sensing retrieval. Specifically, an attention-guided feature extraction framework is employed to obtain the fine-grained representations by jointly learning the raw samples’ global semantic information and the inherent spatial structures. Based on the irrelevant pairs constraint, the dependence-guided proxy loss is developed to construct a robust embedding space, in which the semantic relationships of multi-label data are well expressed by jointly exploring the proxy-data dependency and the correlation of irrelevant samples. In addition, to reduce information loss during the conversion from continuous feature vectors to discrete binary hash codes, we introduce a semantic location quantization strategy to enhance the discriminative ability of discrete coding. Extensive experiments on three benchmarks demonstrate DSdPH’s superior performance. Code is available at https://anonymous.4open.science/r/DSdPH
The Tet2–Upf1 complex modulates mRNA stability under stress conditions
Introduction: Environmental stress promotes epigenetic alterations that impact gene expression and subsequently participate in the pathological processes of the disorder. Among epigenetic regulations, ten–eleven Translocation (Tet) enzymes oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA and RNA and function as critical players in the pathogenesis of diseases. Our previous results showed that chronic stress increases the expression of cytoplasmic Tet2 in the hippocampus of mice exposed to chronic mild stress (CMS). Whether the cytoplasmic Tet2 alters RNA 5hmC modification in chronic stress-related processes remains largely unknown.Methods: To explore the role of cytoplasmic Tet2 under CMS conditions, we established CMS mice model and detected the expression of RNA 5hmC by dot blot. We verified the interaction of Tet2 and its interacting protein by co-immunoprecipitation combined with mass spectrometry and screened downstream target genes by cluster analysis of Tet2 and upstream frameshift 1 (Upf1) interacting RNA. The expression of protein was detected by Western blot and the expression of the screened target genes was detected by qRT-PCR.Results: In this study, we found that increased cytoplasmic Tet2 expression under CMS conditions leads to increase in total RNA 5hmC modification. Tet2 interacted with the key non-sense-mediated mRNA decay (NMD) factor Upf1, regulated the stability of stress-related genes such as Unc5b mRNA, and might thereby affect neurodevelopment.Discussion: In summary, this study revealed that Tet2-mediated RNA 5hmC modification is involved in stress-related mRNA stability regulation and may serve as a potential therapeutic target for chronic stress-related diseases such as depression
Metabolic profiling of Apostichopus japonicus body wall exposed to a typical type of PBDEs: potential health risks and impact on sea cucumber health
IntroductionSea cucumbers are cultivated mainly for their valuable body wall. Polybrominated diphenyl ethers are common persistent pollutants in sea waters with known impacts on aquatic animals nonetheless not yet studied for the body wall of sea cucumbers.MethodsUsing ltra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS), we investigated the metabolic impact of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on the body wall of Apostichopus japonicus. etabolite changes and metabolic pathway alterations were assessed in response to three distinct concentrations of BDE-47: 0.1 µg/L, 1.0 µg/L, and 10.0 µg/L.REsultsExposure to BDE-47 led to notable alterations in the metabolic profiles of the body wall. A total of 95~102 metabolites in the 0.1 ~ 10.0 µg/L BDE-47 treated group were altered significantly, and various disrupted metabolic pathways were identified and characterized. These metabolites and metabolic pathways were mainly involved in lipid metabolism, energy metabolism, immunity, oxidative stress, inflammation, and neurotoxicity.DiscussionThe findings of our study shed light on the potential health risks that polybrominated diphenyl ethers present to sea cucumbers. This underscores the imperative for both researchers and policymakers to delve deeper into further investigations and studies. These results indicate the necessity for enhanced monitoring and management practices within the sea cucumber aquaculture industry to mitigate the impact of these persistent organic pollutants and protect the health and safety of this valuable resource
The diagnostic agreement of sarcopenic obesity with different definitions in Chinese community-dwelling middle-aged and older adults
BackgroundIn 2022, the European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) launched a consensus on the diagnostic methods for sarcopenic obesity (SO). The study aimed to identify the prevalence and diagnostic agreement of SO using different diagnostic methods in a cohort of subjects from West China aged at least 50 years old.MethodsA large multi-ethnic sample of 4,155 participants from the West China Health and Aging Trend (WCHAT) study was analyzed. SO was defined according to the newly published consensus of the ESPEN/EASO. Furthermore, SO was diagnosed as a combination of sarcopenia and obesity. The criteria established by the Asian Working Group for Sarcopenia 2019 (AWGS2019) were used to define sarcopenia. Obesity was defined by four widely used indicators: percent of body fat (PBF), visceral fat area (VFA), waist circumference (WC), and body mass index (BMI). Cohen’s kappa was used to analyze the diagnostic agreement of the above five diagnostic methods.ResultsA total of 4,155 participants were part of the study, including 1,499 men (63.76 ± 8.23 years) and 2,656 women (61.61 ± 8.20 years). The prevalence of SO was 0.63–7.22% with different diagnostic methods. The diagnosis agreement of five diagnostic methods was poor-to-good (κ: 0.06–0.67). The consensus by the ESPEN/EASO had the poorest agreement with other methods (κ: 0.06–0.32). AWGS+VFA had the best agreement with AWGS+WC (κ = 0.67), and consensus by the ESPEN/EASO had the best agreement with AWGS+ PBF (κ = 0.32).ConclusionThe prevalence and diagnostic agreement of SO varies considerably between different diagnostic methods. AWGS+WC has the highest diagnostic rate in the diagnosis of SO, whereas AWGS+BMI has the lowest. AWGS+VFA has a relatively good diagnostic agreement with other diagnostic methods, while the consensus of the ESPEN/EASO has a poor diagnostic agreement. AWGS+PBF may be suitable for the alternative diagnosis of the 2022 ESPEN/EASO
Morphology and phylogeny of two new species of deep-sea mushroom soft corals (Octocorallia, Corallidae, Anthomastinae) from the Southern Mid-Atlantic Ridge
Members of the subfamily Anthomastinae Verrill, 1922, commonly known as mushroom soft corals, are characterized by their capitate or mushroom-shaped red colonies and large autozooids. Deep-sea mushroom corals of this subfamily remain poorly documented in the South Atlantic. This study describes two new Anthomastinae species, Neoanthomastus longistylus sp. nov. and Anthomastus mirabilis sp. nov., from the Southern Mid-Atlantic Ridge at depths of 1,553–2,145 m. Neoanthomastus longistylus sp. nov. is characterized by a slender stalk, siphonozooids distributed on the capitulum and the upper third of the stalk, and tentacular sclerites that are predominantly straight rods and rods with one end curved. Anthomastus mirabilis sp. nov. is distinguished by the presence of dumbbells in its tentacles, clubs and dumbbells in the anthocodial wall, and the absence of spindles. The mitochondrial genome of N. longistylus sp. nov. contains 14 PCGs, 2 rRNAs, and 1 tRNA, while that of A. mirabilis sp. nov. comprises 17 PCGs, 2 rRNAs, and 1 tRNA, with three duplicated genes – ND3, ND6, and ND4L – that are identical in sequence. Phylogenetic analyses based on the partial mtMutS gene and 13 PCGs from the mitochondrial genomes (mtMutS not included) reveal the phylogenetic relationships within the subfamily Anthomastinae. These are the first records of both genera from the Southern Mid-Atlantic Ridge, enriching the known species diversity and providing critical baseline data for future biodiversity assessments
Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.nanoen.2018.04.021 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Metal-free electrocatalysts have eluded widespread adoption in polymer electrolyte membrane fuel cells due to their far inferior catalytic activity than most non-precious metal-N-C counterparts (M-Nx-C) for oxygen reduction reaction (ORR), despite their distinct advantages over the M-Nx-C catalysts, including lower cost and higher durability. Herein, we develop a rational bottom-up engineering strategy to improve the ORR performance of a metal-free catalyst by constructing a three-dimensional ultrathin N, P dual-doped carbon nanosheet. The resultant catalyst represents unprecedented ORR performance with an onset potential of 0.91 V, half-wave potential of 0.79 V. Impressively, a maximum power output at 579 mW cm−2 is generated in the fuel cell test, the best among reported metal-free catalysts and outperforms most of the M-Nx-C catalysts. The outstanding catalytic performance results from the highly active polarized carbon sites which are induced by selective graphitic nitrogen and phosphorous dual doping. Our findings provide new directions for the exploration of alternatives to Pt and bring a renew interests in the metal-free catalysts.National Natural Science Foundation of China || (21633008, 21433003, U1601211, 21733004)
National Science and Technology Major Project || (2016YFB0101202)
Jilin Province Science and Technology Development Program || (20150101066JC, 20160622037JC, 20170203003SF, 20170520150JH)
Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts || (WQ20122200077
Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system
RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification in Locusta migratoria
Citation: Zhang, J., Li, D., Ge, P., Yang, M., Guo, Y., Zhu, K. Y., Ma, E., & Zhang, J. (2013). RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification in Locusta migratoria. Chemosphere, 93(6), 1207-1215.Carboxylesterases (CarEs) play key roles in metabolism of specific hormones and detoxification of dietary and environmental xenobiotics in insects. We sequenced and characterized CarE cDNAs putatively derived from two different genes named LmCesA1 and LmCesA2 from the migratory locust, Locusta migratoria, one of the most important agricultural pests in the world. The full-length cDNAs of LmCesA1 (1892 bp) and LmCesA2 (1643 bp) encode 543 and 501 amino acid residues, respectively. The two deduced CarEs share a characteristic α/β-hydrolase structure, including a catalytic triad composed of Ser-Glu (Asp)-His and a consensus sequence GQSAG, which suggests that both CarEs are biologically active. Phylogenetic analysis grouped both LmCesA1 and LmCesA2 into clade A which has been suggested to be involved in dietary detoxification. Both transcripts were highly expressed in all the nymphal and adult stages, but only slightly expressed in eggs. Analyses of tissue-dependent expression and in situ hybridization revealed that both transcripts were primarily expressed in gastric caeca. RNA interference (RNAi) of LmCesA1 and LmCesA2 followed by a topical application of carbaryl or deltamethrin did not lead to a significantly increased mortality with either insecticide. However, RNAi of LmCesA1 and LmCesA2 increased insect mortalities by 20.9% and 14.5%, respectively, when chlorpyrifos was applied. These results suggest that these genes might not play a significant role in detoxification of carbaryl and deltamethrin but are most likely to be involved in detoxification of chlorpyrifos in L. migratoria
- …
